On the integrability of a generalized variable-coefficient Kadomtsev–Petviashvili equation

By considering the inhomogeneities of media, a generalized variable-coefficient Kadomtsev?Petviashvili (vc-KP) equation is investigated, which can be used to describe many nonlinear phenomena in fluid dynamics and plasma physics. In this paper, we systematically investigate the complete integrability of the generalized vc-KP equation under an integrable constraint condition. With the aid of generalized Bell?s polynomials, its bilinear formalism, bilinear B?cklund transformations, Lax pairs and Darboux covariant Lax pairs are succinctly constructed, which can be reduced to the ones of several integrable equations such as KdV, cylindrical KdV, KP, cylindrical KP, generalized cylindrical KP, non-isospectral KP equations, etc. Moreover, the infinite conservation laws of the equation are found by using its Lax equations. All conserved densities and fluxes are given with explicit recursion formulas. Furthermore, an extra auxiliary variable is introduced to obtain the bilinear formalism, based on which, the soliton solutions and Riemann theta function periodic wave solutions are presented. The influence of inhomogeneity coefficients on solitonic structures and interaction properties are discussed for physical interest and possible applications by some graphic analysis. Finally, a limiting procedure is presented to analyze in detail the asymptotic behavior of the periodic waves and the relations between the periodic wave solutions and soliton solutions.

[1]  Yoshimasa Matsuno,et al.  Bilinear Transformation Method , 1984 .

[2]  P. Clarkson,et al.  Rational solutions of a differential-difference KdV equation, the Toda equation and the discrete KdV equation , 1995 .

[3]  Abdul-Majid Wazwaz,et al.  Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh-coth method , 2007, Appl. Math. Comput..

[4]  Asymptotic Solitons of the Johnson Equation , 2000 .

[5]  Dengyuan Chen,et al.  Some General Formulas in the Sato Theory , 2003 .

[6]  Yufeng Zhang,et al.  A direct method for integrable couplings of TD hierarchy , 2002 .

[7]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[8]  Zhenyun Qin,et al.  Darboux and Bäcklund transformations for the nonisospectral KP equation , 2006 .

[9]  Decio Levi,et al.  Integrable Nonlinear Equations for Water Waves in Straits of Varying Depth and Width , 1987 .

[10]  Wen-Xiu Ma,et al.  The r-matrix structure of the restricted coupled AKNS-Kaup-Newell flow , 2000, Appl. Math. Lett..

[11]  Hong-qing Zhang,et al.  Some types of solutions and generalized binary Darboux transformation for the mKP equation with self-consistent sources , 2010 .

[12]  Engui Fan,et al.  Binary Bell polynomials approach to the integrability of nonisospectral and variable-coefficient nonlinear equations , 2010, 1008.4194.

[13]  Zhifei Zhang,et al.  On the integrability of the generalized Fisher-type nonlinear diffusion equations , 2009 .

[14]  R. B. Paris,et al.  The asymptotics of the generalised Hermite-Bell polynomials , 2009, J. Comput. Appl. Math..

[15]  Johan Springael,et al.  Soliton Equations and Simple Combinatorics , 2008 .

[16]  Bo Tian,et al.  Transformations for a generalized variable-coefficient nonlinear Schrödinger model from plasma physics, arterial mechanics and optical fibers with symbolic computation , 2005 .

[17]  Silvia Noschese,et al.  Differentiation of Multivariable Composite Functions and Bell Polynomials , 2003 .

[18]  Shoufeng Shen,et al.  Nonlinear evolution equations admitting multilinear variable separable solutions , 2009 .

[19]  S. Lou,et al.  Equations of arbitrary order invariant under the Kadomtsev-Petviashvili symmetry group , 2004 .

[20]  J. Nimmo,et al.  On the combinatorics of the Hirota D-operators , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  The multicomponent generalized Kaup–Newell hierarchy and its multicomponent integrable couplings system with two arbitrary functions , 2005 .

[22]  Jingsong He,et al.  Two choices of the gauge transformation for the AKNS hierarchy through the constrained KP hierarchy , 2003 .

[23]  H. Tam,et al.  On the nonisospectral Kadomtsev?Petviashvili equation , 2006 .

[24]  Engui Fan,et al.  Quasiperiodic waves and asymptotic behavior for Bogoyavlenskii's breaking soliton equation in (2+1) dimensions. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Xianguo Geng,et al.  Relation between the Kadometsev–Petviashvili equation and the confocal involutive system , 1999 .

[26]  Huang Yan,et al.  Nonlinear deformation theory of thin shell , 2000 .

[27]  P. Clarkson,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering: References , 1991 .

[28]  Decio Levi,et al.  The cylindrical Kadomtsev-Petviashvili equation; its Kac-Moody-Virasoro algebra and relation to KP equation , 1988 .

[29]  Kwok Wing Chow,et al.  On the periodic solutions for both nonlinear differential and difference equations: A unified approach , 2010 .

[30]  Zhijun Qiao,et al.  Category of nonlinear evolution equations, algebraic structure, and r-matrix , 2002, nlin/0201066.

[31]  Generalized Kadomtsev–Petviashvili equation with an infinite-dimensional symmetry algebra , 2001, nlin/0109009.

[32]  C. Dai,et al.  New solitons for the Hirota equation and generalized higher-order nonlinear Schrödinger equation with variable coefficients , 2006 .

[33]  A. Nakamura Solitons in Higher Dimensions , 1988 .

[34]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[35]  Engui Fan,et al.  Darboux transformation and soliton-like solutions for the Gerdjikov-Ivanov equation , 2000 .

[36]  Da-jun Zhang,et al.  The n-soliton solutions for the modified KdV equation with self-consistent sources , 2002 .

[37]  Hui-Hui Dai,et al.  The interaction of the ω-soliton and ω-cuspon of the Camassa–Holm equation , 2005 .

[38]  P. Clarkson Painlevé Analysis and the Complete Integrability of a Generalized Variable-Coefficient Kadomtsev-Petviashvili Equation , 1990 .

[39]  Wenxiu Ma,et al.  Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions , 2004, nlin/0503001.

[40]  Comment on: “Application of the G′G method for the complex KdV equation” [Huiqun Zhang, Commun Nonlinear Sci Numer Simul 15;2010:1700–1704] , 2011 .

[41]  Wang Ming-Liang,et al.  Travelling wave solutions to the two-dimensional KdV-Burgers equation , 1993 .

[42]  Robert M. Miura,et al.  Korteweg‐deVries Equation and Generalizations. V. Uniqueness and Nonexistence of Polynomial Conservation Laws , 1970 .

[43]  Shou-Fu Tian,et al.  A kind of explicit Riemann theta functions periodic waves solutions for discrete soliton equations , 2011 .

[44]  P. J. Bryant Two-dimensional periodic permanent waves in shallow water , 1982, Journal of Fluid Mechanics.

[45]  D. Levi,et al.  Bäcklund transformations and the infinite-dimensional symmetry group of the Kadomtsev-Petviashvili equation , 1986 .

[46]  Shou-Fu Tian,et al.  Riemann theta functions periodic wave solutions and rational characteristics for the nonlinear equations , 2010 .

[47]  Bo Tian,et al.  On the solitonic structures of the cylindrical dust-acoustic and dust-ion-acoustic waves with symbolic computation , 2005 .

[48]  V. Dubrovsky,et al.  delta -dressing and exact solutions for the (2+1)-dimensional Harry Dym equation , 1994 .

[49]  Zuo-nong Zhu,et al.  Painlevé property, Bäcklund transformation, Lax pair and soliton-like solution for a variable coefficient KP equation , 1993 .

[50]  R. S. Johnson Water waves and Korteweg–de Vries equations , 1980, Journal of Fluid Mechanics.

[51]  Yong Chen,et al.  Generalized Q-S (lag, anticipated and complete) synchronization in modified Chua's circuit and Hindmarsh-Rose systems , 2006, Appl. Math. Comput..

[52]  Coffey Nonlinear dynamics of vortices in ultraclean type-II superconductors: Integrable wave equations in cylindrical geometry. , 1996, Physical review. B, Condensed matter.

[53]  W. Steeb,et al.  Painleve analysis for a time-dependent Kadomtsev-Petviashvili equation , 1984 .

[54]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[55]  X. Geng,et al.  Explicit solutions of the 2 + 1-dimensional breaking soliton equation , 2004 .

[56]  F. T. Howard A special class of Bell polynomials , 1980 .

[57]  Shoufeng Shen,et al.  New exact solutions of the (2+1)-dimensional KdV equation with variable coefficients , 2005 .

[58]  Hong-qing Zhang,et al.  LAX PAIR, BINARY DARBOUX TRANSFORMATION AND NEW GRAMMIAN SOLUTIONS OF NONISOSPECTRAL KADOMTSEV–PETVIASHVILI EQUATION WITH THE TWO-SINGULAR-MANIFOLD METHOD , 2010 .

[59]  Ying Ying Zhang,et al.  Conclusions and Discussions , 2011 .

[60]  M. Wadati,et al.  Relationships among Inverse Method, Bäcklund Transformation and an Infinite Number of Conservation Laws , 1975 .

[61]  Zhu Zuo-Nong,et al.  SOLITON-LIKE SOLUTIONS OF GENERALIZED KdV EQUA-TION WITH EXTERNAL FORCE TERM , 2005 .

[62]  Pierpaolo Natalini,et al.  Multidimensional bell polynomials of higher order , 2005 .

[63]  Y. Stepanyants,et al.  Internal solitons in the ocean and their effect on underwater sound. , 2007, The Journal of the Acoustical Society of America.

[64]  M. Wadati,et al.  A Generalization of Inverse Scattering Method , 1979 .

[65]  Yi Zhang,et al.  Exact loop solutions, cusp solutions, solitary wave solutions and periodic wave solutions for the special CH–DP equation , 2009 .

[66]  Xing-Biao Hu,et al.  A vector potential KdV equation and vector Ito equation: soliton solutions, bilinear Bäcklund transformations and Lax pairs , 2003 .

[67]  Wen-Xiu Ma,et al.  EXACT ONE-PERIODIC AND TWO-PERIODIC WAVE SOLUTIONS TO HIROTA BILINEAR EQUATIONS IN (2+1) DIMENSIONS , 2008, 0812.4316.

[68]  S. Lou,et al.  Infinitely many Lax pairs and symmetry constraints of the KP equation , 1997 .

[69]  Gopal Das,et al.  Response to “Comment on ‘A new mathematical approach for finding the solitary waves in dusty plasma’ ” [Phys. Plasmas 6, 4392 (1999)] , 1999 .

[70]  Johan Springael,et al.  Classical Darboux transformations and the KP hierarchy , 2001 .

[71]  China,et al.  Negaton and positon solutions of the soliton equation with self-consistent sources , 2003, nlin/0304030.

[72]  Mai-mai Lin,et al.  The Kadomtsev–Petviashvili (KP), MKP, and coupled KP equations for two-ion-temperature dusty plasmas , 2005 .

[73]  Tao Xu,et al.  Symbolic computation on the multi-soliton-like solutions of the cylindrical Kadomtsev–Petviashvili equation from dusty plasmas , 2007 .

[74]  Zhenya Yan,et al.  Symbolic computation and new families of exact soliton-like solutions to the integrable Broer-Kaup (BK) equations in (2+1)-dimensional spaces , 2001 .

[75]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[76]  R. S. Johnson,et al.  A Modern Introduction to the Mathematical Theory of Water Waves: Bibliography , 1997 .

[77]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[78]  P. Liu,et al.  The unified Kadomtsev–Petviashvili equation for interfacial waves , 1995, Journal of Fluid Mechanics.

[79]  Xing-Biao Hu,et al.  An integrable symmetric (2+1)-dimensional Lotka–Volterra equation and a family of its solutions , 2005 .