Correlations of RMT characteristic polynomials and integrability: Hermitean matrices
暂无分享,去创建一个
[1] P. Forrester,et al. Application of the τ-function theory of Painlevé equations to random matrices: PVI , the JUE, CyUE, cJUE and scaled limits , 2002, Nagoya Mathematical Journal.
[2] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[3] P. Forrester. Log-Gases and Random Matrices , 2010 .
[4] J. P. Keating,et al. Random matrix theory and the derivative of the Riemann zeta function , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[5] E. Strahov,et al. Averages of Characteristic Polynomials in Random Matrix Theory , 2004 .
[6] Freeman J. Dyson,et al. The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics , 1962 .
[7] 広田 良吾,et al. The direct method in soliton theory , 2004 .
[8] V. Osipov,et al. Statistics of thermal to shot noise crossover in chaotic cavities , 2009, 0902.3069.
[9] C. Beenakker. Random-matrix theory of quantum transport , 1996, cond-mat/9612179.
[10] Semiclassical Foundation of Universality in Quantum Chaos , 2004, nlin/0401021.
[11] J. Chazy,et al. Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixes , 1911 .
[12] P. Moerbeke,et al. Random Matrices, Vertex Operators and the Virasoro-algebra , 1995 .
[13] Eugene Strahov,et al. Products and ratios of characteristic polynomials of random Hermitian matrices , 2003 .
[14] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[15] Jacobus J. M. Verbaarschot,et al. Critique of the replica trick , 1985 .
[16] Kazuo Okamoto. Polynomial Hamiltonians associated with Painlevé equations, II. Differential equations satisfied by polynomial Hamiltonians , 1980 .
[17] Replica field theories, painlevé transcendents, and exact correlation functions. , 2002, Physical review letters.
[18] Integrability and matrix models , 1993, hep-th/9303139.
[19] P. J. Forrester,et al. Application of the τ-Function Theory¶of Painlevé Equations to Random Matrices:¶PIV, PII and the GUE , 2001, math-ph/0103025.
[20] Y. Fyodorov. Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices. , 2004 .
[21] J. Verbaarschot,et al. Factorization of Correlation Functions and the Replica Limit of the Toda Lattice Equation , 2003, hep-th/0310271.
[22] Determinants of Hankel Matrices , 2000, math/0006070.
[23] V. B. Uvarov. The connection between systems of polynomials orthogonal with respect to different distribution functions , 1969 .
[24] I. V. Krasovsky. Correlations of the characteristic polynomials in the Gaussian unitary ensemble or a singular Hankel determinant , 2004 .
[25] E. Heine,et al. Handbuch der Kugelfunctionen , 1861 .
[26] M. Noumi. Painlevé Equations through Symmetry , 2004 .
[27] Arbitrary unitarily invariant random matrix ensembles and supersymmetry , 2006, math-ph/0606014.
[28] C. M. Cosgrove,et al. Painlevé Classification of a Class of Differential Equations of the Second Order and Second Degree , 1993 .
[29] B. Gambier,et al. Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes , 1910 .
[30] Yan V. Fyodorov,et al. Universal Results for Correlations of Characteristic Polynomials: Riemann-Hilbert Approach , 2002 .
[31] Edouard Brézin,et al. Characteristic Polynomials of Random Matrices , 2000 .
[32] V. Osipov,et al. Are bosonic replicas faulty? , 2007, Physical review letters.
[33] C. Cosgrove. Chazy Classes IX–XI Of Third‐Order Differential Equations , 2000 .
[34] T. Guhr. Dyson’s correlation functions and graded symmetry , 1991 .
[35] J. Verbaarschot,et al. Grassmann integration in stochastic quantum physics: The case of compound-nucleus scattering , 1985 .
[36] de Ng Dick Bruijn. On some multiple integrals involving determinants , 1955 .
[37] T. Garoni. On the asymptotics of some large Hankel determinants generated by Fisher–Hartwig symbols defined on the real line , 2004, math-ph/0411019.
[38] É. Brézin,et al. Intersection Theory from Duality and Replica , 2007, 0708.2210.
[39] H. Sommers,et al. Random Bures mixed states and the distribution of their purity , 2009, 0909.5094.
[40] Kazuo Okamoto,et al. Polynomial Hamiltonians associated with Painlevé equations, I , 1980 .
[41] Yan V. Fyodorov,et al. An exact formula for general spectral correlation function of random Hermitian matrices , 2002, math-ph/0204051.
[42] Thomas Guhr,et al. The k-point random matrix kernels obtained from one-point supermatrix models , 2004 .
[43] Nina C Snaith,et al. Random Matrix Theory and L-Functions at s= 1/2 , 2000 .
[44] K. Efetov. Supersymmetry and theory of disordered metals , 1983 .
[45] Grigori Olshanski,et al. Giambelli compatible point processes , 2006, Adv. Appl. Math..
[46] O. Bohigas,et al. Characterization of chaotic quantum spectra and universality of level fluctuation laws , 1984 .
[47] N. Snaith,et al. Random Matrix Theory and ζ(1/2+it) , 2000 .
[48] M. Mehta,et al. Moments of the characteristic polynomial in the three ensembles of random matrices , 2001, cond-mat/0101469.
[49] S. Edwards,et al. Theory of spin glasses , 1975 .
[50] P. J. Forrester,et al. Application of the τ-function theory of Painlevé equations to random matrices: PV, PIII, the LUE, JUE, and CUE , 2002 .
[51] P. Painlevé,et al. Mémoire sur les équations différentielles dont l'intégrale générale est uniforme , 1900 .
[52] Craig A. Tracy,et al. Mathematical Physics © Springer-Verlag 1994 Fredholm Determinants, Differential Equations and Matrix Models , 2022 .
[53] Hermitian, symmetric and symplectic random ensembles: PDEs for the distribution of the spectrum , 2000, math-ph/0009001.
[54] Andreev,et al. Correlators of spectral determinants in quantum chaos. , 1995, Physical review letters.
[55] V. Osipov,et al. Integrable theory of quantum transport in chaotic cavities. , 2008, Physical review letters.
[56] Patrick Desrosiers,et al. Duality in random matrix ensembles for all β , 2008, 0801.3438.
[57] P. Painlevé,et al. Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme , 1902 .
[58] E. Gardner,et al. The Laplacian on a random one-dimensional lattice , 1984 .
[59] T. Guhr,et al. Arbitrary rotation invariant random matrix ensembles and supersymmetry: orthogonal and unitary-symplectic case , 2009, 0905.3253.