Correlations of RMT characteristic polynomials and integrability: Hermitean matrices

Abstract Integrable theory is formulated for correlation functions of characteristic polynomials associated with invariant non-Gaussian ensembles of Hermitean random matrices. By embedding the correlation functions of interest into a more general theory of τ functions, we (i) identify a zoo of hierarchical relations satisfied by τ functions in an abstract infinite-dimensional space and (ii) present a technology to translate these relations into hierarchically structured nonlinear differential equations describing the correlation functions of characteristic polynomials in the physical, spectral space. Implications of this formalism for fermionic, bosonic, and supersymmetric variations of zero-dimensional replica field theories are discussed at length. A particular emphasis is placed on the phenomenon of fermionic–bosonic factorisation of random-matrix-theory correlation functions.

[1]  P. Forrester,et al.  Application of the τ-function theory of Painlevé equations to random matrices: PVI , the JUE, CyUE, cJUE and scaled limits , 2002, Nagoya Mathematical Journal.

[2]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[3]  P. Forrester Log-Gases and Random Matrices , 2010 .

[4]  J. P. Keating,et al.  Random matrix theory and the derivative of the Riemann zeta function , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  E. Strahov,et al.  Averages of Characteristic Polynomials in Random Matrix Theory , 2004 .

[6]  Freeman J. Dyson,et al.  The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics , 1962 .

[7]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[8]  V. Osipov,et al.  Statistics of thermal to shot noise crossover in chaotic cavities , 2009, 0902.3069.

[9]  C. Beenakker Random-matrix theory of quantum transport , 1996, cond-mat/9612179.

[10]  Semiclassical Foundation of Universality in Quantum Chaos , 2004, nlin/0401021.

[11]  J. Chazy,et al.  Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixes , 1911 .

[12]  P. Moerbeke,et al.  Random Matrices, Vertex Operators and the Virasoro-algebra , 1995 .

[13]  Eugene Strahov,et al.  Products and ratios of characteristic polynomials of random Hermitian matrices , 2003 .

[14]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[15]  Jacobus J. M. Verbaarschot,et al.  Critique of the replica trick , 1985 .

[16]  Kazuo Okamoto Polynomial Hamiltonians associated with Painlevé equations, II. Differential equations satisfied by polynomial Hamiltonians , 1980 .

[17]  Replica field theories, painlevé transcendents, and exact correlation functions. , 2002, Physical review letters.

[18]  Integrability and matrix models , 1993, hep-th/9303139.

[19]  P. J. Forrester,et al.  Application of the τ-Function Theory¶of Painlevé Equations to Random Matrices:¶PIV, PII and the GUE , 2001, math-ph/0103025.

[20]  Y. Fyodorov Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices. , 2004 .

[21]  J. Verbaarschot,et al.  Factorization of Correlation Functions and the Replica Limit of the Toda Lattice Equation , 2003, hep-th/0310271.

[22]  Determinants of Hankel Matrices , 2000, math/0006070.

[23]  V. B. Uvarov The connection between systems of polynomials orthogonal with respect to different distribution functions , 1969 .

[24]  I. V. Krasovsky Correlations of the characteristic polynomials in the Gaussian unitary ensemble or a singular Hankel determinant , 2004 .

[25]  E. Heine,et al.  Handbuch der Kugelfunctionen , 1861 .

[26]  M. Noumi Painlevé Equations through Symmetry , 2004 .

[27]  Arbitrary unitarily invariant random matrix ensembles and supersymmetry , 2006, math-ph/0606014.

[28]  C. M. Cosgrove,et al.  Painlevé Classification of a Class of Differential Equations of the Second Order and Second Degree , 1993 .

[29]  B. Gambier,et al.  Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes , 1910 .

[30]  Yan V. Fyodorov,et al.  Universal Results for Correlations of Characteristic Polynomials: Riemann-Hilbert Approach , 2002 .

[31]  Edouard Brézin,et al.  Characteristic Polynomials of Random Matrices , 2000 .

[32]  V. Osipov,et al.  Are bosonic replicas faulty? , 2007, Physical review letters.

[33]  C. Cosgrove Chazy Classes IX–XI Of Third‐Order Differential Equations , 2000 .

[34]  T. Guhr Dyson’s correlation functions and graded symmetry , 1991 .

[35]  J. Verbaarschot,et al.  Grassmann integration in stochastic quantum physics: The case of compound-nucleus scattering , 1985 .

[36]  de Ng Dick Bruijn On some multiple integrals involving determinants , 1955 .

[37]  T. Garoni On the asymptotics of some large Hankel determinants generated by Fisher–Hartwig symbols defined on the real line , 2004, math-ph/0411019.

[38]  É. Brézin,et al.  Intersection Theory from Duality and Replica , 2007, 0708.2210.

[39]  H. Sommers,et al.  Random Bures mixed states and the distribution of their purity , 2009, 0909.5094.

[40]  Kazuo Okamoto,et al.  Polynomial Hamiltonians associated with Painlevé equations, I , 1980 .

[41]  Yan V. Fyodorov,et al.  An exact formula for general spectral correlation function of random Hermitian matrices , 2002, math-ph/0204051.

[42]  Thomas Guhr,et al.  The k-point random matrix kernels obtained from one-point supermatrix models , 2004 .

[43]  Nina C Snaith,et al.  Random Matrix Theory and L-Functions at s= 1/2 , 2000 .

[44]  K. Efetov Supersymmetry and theory of disordered metals , 1983 .

[45]  Grigori Olshanski,et al.  Giambelli compatible point processes , 2006, Adv. Appl. Math..

[46]  O. Bohigas,et al.  Characterization of chaotic quantum spectra and universality of level fluctuation laws , 1984 .

[47]  N. Snaith,et al.  Random Matrix Theory and ζ(1/2+it) , 2000 .

[48]  M. Mehta,et al.  Moments of the characteristic polynomial in the three ensembles of random matrices , 2001, cond-mat/0101469.

[49]  S. Edwards,et al.  Theory of spin glasses , 1975 .

[50]  P. J. Forrester,et al.  Application of the τ-function theory of Painlevé equations to random matrices: PV, PIII, the LUE, JUE, and CUE , 2002 .

[51]  P. Painlevé,et al.  Mémoire sur les équations différentielles dont l'intégrale générale est uniforme , 1900 .

[52]  Craig A. Tracy,et al.  Mathematical Physics © Springer-Verlag 1994 Fredholm Determinants, Differential Equations and Matrix Models , 2022 .

[53]  Hermitian, symmetric and symplectic random ensembles: PDEs for the distribution of the spectrum , 2000, math-ph/0009001.

[54]  Andreev,et al.  Correlators of spectral determinants in quantum chaos. , 1995, Physical review letters.

[55]  V. Osipov,et al.  Integrable theory of quantum transport in chaotic cavities. , 2008, Physical review letters.

[56]  Patrick Desrosiers,et al.  Duality in random matrix ensembles for all β , 2008, 0801.3438.

[57]  P. Painlevé,et al.  Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme , 1902 .

[58]  E. Gardner,et al.  The Laplacian on a random one-dimensional lattice , 1984 .

[59]  T. Guhr,et al.  Arbitrary rotation invariant random matrix ensembles and supersymmetry: orthogonal and unitary-symplectic case , 2009, 0905.3253.