A lockdown survey on cDV singularities

This is an expository survey article on compound Du Val (cDV) singularities, with emphasis on recent homological approaches, including: noncommutative resolutions, tilting theory, contraction algebras, classification, derived categories, autoequivalences, stability conditions, deformation theory, and cluster tilting theory.

[1]  Y. Kawamata On the Cone of divisors of Calabi-Yau fiber spaces , 1997, alg-geom/9701006.

[2]  J. Kollár,et al.  Classification of three-dimensional flips , 1992 .

[3]  Matt Booth,et al.  Singularity categories via the derived quotient , 2020, Advances in Mathematics.

[4]  Maurice Auslander,et al.  Rational singularities and almost split sequences , 1986 .

[5]  Yukikazu Hirano,et al.  Faithful actions from hyperplane arrangements , 2016, Geometry & Topology.

[6]  Tom Bridgeland Flops and derived categories , 2000 .

[7]  M. Wemyss,et al.  Gopakumar–Vafa Invariants Do Not Determine Flops , 2017, 1707.01150.

[8]  Osamu Iyama,et al.  Reduction of triangulated categories and Maximal Modification Algebras for cA_n singularities , 2013, 1304.5259.

[9]  Ben Davison Refined invariants of finite-dimensional Jacobi algebras , 2019, 1903.00659.

[10]  Ragni Piene,et al.  The Legacy of Niels Henrik Abel , 2004 .

[11]  C. Deconcini,et al.  An introduction to noncommutative deformations of modules , 2006 .

[12]  M. Wemyss,et al.  Noncommutative deformations and flops , 2013, 1309.0698.

[13]  Maurice Auslander,et al.  Isolated singularities and existence of almost split sequences , 1986 .

[14]  Yukinobu Toda Non-commutative width and Gopakumar–Vafa invariants , 2014, 1411.1505.

[15]  E. Viehweg Rational singularities of higher dimensional schemes , 1977 .

[16]  I. Reiten,et al.  Cluster tilting for one-dimensional hypersurface singularities , 2007, 0704.1249.

[17]  M. Reid Minimal Models of Canonical 3-Folds , 1983 .

[18]  D. Markushevich CANONICAL SINGULARITIES OF THREE-DIMENSIONAL HYPERSURFACES , 1986 .

[19]  Z. Hua Contraction algebra and singularity of three-dimensional flopping contraction , 2016, 1610.05467.

[20]  M. Wemyss,et al.  Contractions and deformations , 2015, American Journal of Mathematics.

[21]  M. Wemyss,et al.  Noncommutative enhancements of contractions , 2016, Advances in Mathematics.

[22]  Graham J. Leuschke Non-Commutative Crepant Resolutions: Scenes from Categorical Geometry , 2011, 1103.5380.

[23]  Yukinobu Toda Stability conditions and crepant small resolutions , 2005, math/0512648.

[24]  M. Wemyss,et al.  Auslander-Reiten Duality and Maximal Modifications for Non-isolated Singularities , 2010 .

[25]  Eivind Eriksen Computing Noncommutative Deformations of Presheaves and Sheaves of Modules , 2004, Canadian Journal of Mathematics.

[26]  T. Bridgeland Stability conditions and Kleinian singularities , 2005, math/0508257.

[27]  Osamu Iyama,et al.  Singular derived categories of -factorial terminalizations and maximal modification algebras , 2011, 1108.4518.

[28]  Multiple covers and the integrality conjecture for rational curves in Calabi-Yau threefolds , 1999, math/9911056.

[29]  M. Wemyss,et al.  Flops and clusters in the homological minimal model programme , 2014, 1411.7189.

[30]  Michel Van den Bergh Three-dimensional flops and noncommutative rings , 2002 .

[31]  Miles Reid,et al.  Young person''s guide to canonical singularities , 1985 .

[32]  M. Wemyss,et al.  Twists and braids for general 3-fold flops , 2015, Journal of the European Mathematical Society.

[33]  S. Shkarin,et al.  POTENTIAL ALGEBRAS WITH FEW GENERATORS , 2018, Glasgow Mathematical Journal.

[34]  Kentaro Nagao,et al.  Derived categories of small toric Calabi-Yau 3-folds and counting invariants , 2008, 0809.2994.

[35]  Y. Kawamata Non-commutative deformations of simple objects in a category of perverse coherent sheaves , 2018, Selecta Mathematica.

[36]  Yukinobu Toda,et al.  Contraction algebra and invariants of singularities , 2016, 1601.04881.

[37]  Hailong Dao,et al.  Vanishing of Ext, cluster tilting modules and finite global dimension of endomorphism rings , 2010, 1005.5359.

[38]  A. Smoktunowicz,et al.  Golod-Shafarevich-Type Theorems and Potential Algebras , 2017, 1711.07854.