Mixing and remineralization in waters detrained from the surface into Subantarctic Mode Water and Antarctic Intermediate Water in the southeastern Pacific

A hydrographic data set collected in the region and season of Subantarctic Mode Water and Antarctic Intermediate Water (SAMW and AAIW) formation in the southeastern Pacific allows us to estimate the preformed properties of surface water detrained into these water masses from deep mixed layers north of the Subantarctic Front and Antarctic Surface Water south of the front. Using 10 measured seawater properties, we estimate: the fractions of SAMW/AAIW that originate as surface source waters, as well as fractions that mix into these water masses from subtropical thermocline water above and Upper Circumpolar Deep Water below the subducted SAMW/AAIW; ages associated with the detrained surface water; and remineralization and dissolution rates and ratios. The mixing patterns imply that cabbeling can account for ∼0.005–0.03 kg m−3 of additional density in AAIW, and ∼0–0.02 kg m−3 in SAMW. We estimate a shallow depth (∼300–700 m, above the aragonite saturation horizon) calcium carbonate dissolution rate of 0.4 ± 0.2 µmol CaCO3 kg−1 yr−1, a phosphate remineralization rate of 0.031 ± 0.009 µmol P kg−1 yr−1, and remineralization ratios of P:N:–O2:Corg of 1:(15.5 ± 0.6):(143 ± 10):(104 ± 22) for SAMW/AAIW. Our shallow depth calcium carbonate dissolution rate is comparable to previous estimates for our region. Our –O2:P ratio is smaller than many global averages. Our model suggests neglecting diapycnal mixing of preformed phosphate has likely biased previous estimates of –O2:P and Corg:P high, but that the Corg:P ratio bias may have been counteracted by a second bias in previous studies from neglecting anthropogenic carbon gradients.

[1]  L. Talley,et al.  Subantarctic Mode Water Formation, Destruction, and Export in the Eddy-Permitting Southern Ocean State Estimate , 2013 .

[2]  L. Talley,et al.  Subantarctic mode water in the southeast Pacific: Effect of exchange across the Subantarctic Front , 2013 .

[3]  Jasper A. Vrugt,et al.  Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter , 2013 .

[4]  H. Hasumi,et al.  Eddy-Resolving Model Estimate of the Cabbeling Effect on the Water Mass Transformation in the Southern Ocean , 2012 .

[5]  L. Talley,et al.  The role of air‐sea fluxes in Subantarctic Mode Water formation , 2012 .

[6]  J. Toggweiler,et al.  The control of atmospheric pCO2 by ocean ventilation change: The effect of the oceanic storage of biogenic carbon , 2011 .

[7]  L. Talley,et al.  Formation rates of Subantarctic mode water and Antarctic intermediate water within the South Pacific , 2011 .

[8]  C. Deutsch,et al.  Ocean nutrient ratios governed by plankton biogeography , 2010, Nature.

[9]  T. McDougall,et al.  Influence of the Nonlinear Equation of State on Global Estimates of Dianeutral Advection and Diffusion , 2010 .

[10]  L. Talley,et al.  Antarctic Intermediate Water and Subantarctic Mode Water Formation in the Southeast Pacific: The Role of Turbulent Mixing , 2010 .

[11]  K. Speer,et al.  Southern Ocean Thermocline Ventilation , 2010 .

[12]  Toste Tanhua,et al.  The CARINA data synthesis project: introduction and overview , 2009 .

[13]  S. Khatiwala,et al.  Reconstruction of the history of anthropogenic CO2 concentrations in the ocean , 2009, Nature.

[14]  John P. Dunne,et al.  Efficiency of small scale carbon mitigation by patch iron fertilization , 2009 .

[15]  Lynne D. Talley,et al.  A New Algorithm for Finding Mixed Layer Depths with Applications to Argo Data and Subantarctic Mode Water Formation , 2009 .

[16]  L. Talley,et al.  The WOCE-era 3-D Pacific Ocean circulation and heat budget , 2009 .

[17]  Jorge L. Sarmiento,et al.  The impact of remineralization depth on the air–sea carbon balance , 2009 .

[18]  A. Gnanadesikan,et al.  Regional impacts of iron-light colimitation in a global biogeochemical model , 2009 .

[19]  D. Stevens,et al.  Variability of Subantarctic Mode Water and Antarctic Intermediate Water in the Drake Passage during the Late-Twentieth and Early-Twenty-First Centuries , 2009 .

[20]  Taro Takahashi,et al.  Oceanic sources, sinks, and transport of atmospheric CO2 , 2009 .

[21]  S. Rintoul,et al.  The response of the Antarctic Circumpolar Current to recent climate change , 2008 .

[22]  Richard A. Krishfield,et al.  Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983 , 2008 .

[23]  K. Speer,et al.  Global Ocean Meridional Overturning , 2007 .

[24]  Dieter Wolf-Gladrow,et al.  Total alkalinity: The explicit conservative expression and its application to biogeochemical processes , 2007 .

[25]  S. Fowler,et al.  An assessment of the use of sediment traps for estimating upper ocean particle fluxes , 2007 .

[26]  R. Feely,et al.  Relating estimates of CaCO3 production, export, and dissolution in the water column to measurements of CaCO3 rain into sediment traps and dissolution on the sea floor: A revised global carbonate budget , 2007 .

[27]  J. Schoukens,et al.  Water mass distributions in the Southern Ocean derived from a parametric analysis of mixing water masses , 2007 .

[28]  K. Rodgers,et al.  An Exchange Window for the Injection of Antarctic Intermediate Water into the South Pacific , 2007 .

[29]  M. Follows,et al.  Possible overestimation of shallow‐depth calcium carbonate dissolution in the ocean , 2006 .

[30]  Benoit Gabrielle,et al.  Process‐based modeling of nitrous oxide emissions from wheat‐cropped soils at the subregional scale , 2006 .

[31]  M. Follows,et al.  Dissolution of calcium carbonate: observations and model results in the subpolar North Atlantic , 2006 .

[32]  D. Sigman,et al.  Nitrogen isotope constraints on subantarctic biogeochemistry , 2006 .

[33]  M. Maltrud,et al.  Transit-Time Distributions in a Global Ocean Model , 2006 .

[34]  Patrick Heimbach,et al.  Controls on ocean productivity and air‐sea carbon flux: An adjoint model sensitivity study , 2006 .

[35]  K. Matsumoto,et al.  How accurate is the estimation of anthropogenic carbon in the ocean? An evaluation of the ΔC* method , 2005 .

[36]  David Archer,et al.  Fate of fossil fuel CO2 in geologic time , 2005 .

[37]  Daniele Iudicone,et al.  Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology , 2004 .

[38]  Richard A. Feely,et al.  A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP) , 2004 .

[39]  M. England,et al.  Antarctic Intermediate Water Circulation and Variability in a Coupled Climate Model , 2004 .

[40]  Richard A. Feely,et al.  Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans , 2004, Science.

[41]  S. Mecking,et al.  Influence of mixing on CFC uptake and CFC ages in the North Pacific thermocline , 2004 .

[42]  Margarita López Martínez,et al.  Unified equations for the slope, intercept, and standard errors of the best straight line , 2004 .

[43]  M. Brzezinski,et al.  High-latitude controls of thermocline nutrients and low latitude biological productivity , 2004, Nature.

[44]  Paul E. Robbins,et al.  Data-Based Meridional Overturning Streamfunctions for the Global Ocean , 2003 .

[45]  Andrew G. Dickson,et al.  Variability in oxygen and nutrients in South Pacific Antarctic Intermediate Water , 2003 .

[46]  L. Talley,et al.  Cabbeling and the density of the North Pacific Intermediate Water quantified by an inverse method , 2003 .

[47]  S. Riser,et al.  Deep convection and brine rejection in the Japan Sea , 2003 .

[48]  M. Rhein,et al.  Using a CFC effective age to estimate propagation and storage of climate anomalies in the deep western North Atlantic Ocean , 2002 .

[49]  R. Feely,et al.  Distribution of anthropogenic CO2 in the Pacific Ocean , 2002 .

[50]  T. Peng,et al.  Latitudinal change of remineralization ratios in the oceans and its implication for nutrient cycles , 2002 .

[51]  R. Feely,et al.  In situ calcium carbonate dissolution in the Pacific Ocean , 2002 .

[52]  J. Baldock,et al.  The biochemical and elemental compositions of marine plankton: A NMR perspective , 2002 .

[53]  T. Trull,et al.  Moored sediment trap measurements of carbon export in the Subantarctic and Polar Frontal zones of the Southern Ocean, south of Australia , 2001 .

[54]  P. Quay,et al.  Redfield ratios revisited: Removing the biasing effect of anthropogenic CO2 , 2001 .

[55]  L. Talley,et al.  The Role of Cabbeling and Double Diffusion in Setting the Density of the North Pacific Intermediate Water Salinity Minimum , 2001 .

[56]  R. Sonnerup On the relations among CFC derived water mass ages , 2001 .

[57]  E. Yu,et al.  Trapping efficiency of bottom-tethered sediment traps estimated from the intercepted fluxes of 230Th and 231Pa , 2001 .

[58]  S. Rintoul,et al.  The Southern Ocean Limb of the Global Deep Overturning Circulation , 2001 .

[59]  L. Talley,et al.  Chapter 5.4 Mode waters , 2001 .

[60]  R. Collier,et al.  Particle fluxes to the interior of the Southern Ocean in the Western Pacific sector along 170°W , 2000 .

[61]  W. K. Johnson,et al.  Seasonal and interannual variability in particle fluxes of carbon, nitrogen and silicon from time series of sediment traps at Ocean Station P, 1982–1993: relationship to changes in subarctic primary productivity , 1999 .

[62]  K. Johnson,et al.  Anthropogenic CO2 inventory of the Indian Ocean , 1999 .

[63]  T. McDougall,et al.  A Neutral Density Variable for the World’s Oceans , 1997 .

[64]  T. Stocker,et al.  An improved method for detecting anthropogenic CO2 in the oceans , 1996 .

[65]  L. Talley Antarctic Intermediate Water in the South Atlantic , 1996 .

[66]  L. A. Anderson,et al.  Global ocean phosphate and oxygen simulations , 1995 .

[67]  Laurence A. Anderson,et al.  On the hydrogen and oxygen content of marine phytoplankton , 1995 .

[68]  T. McDougall,et al.  Dianeutral Motion, Water Mass Conversion, and Nonlinear Effects on the Density Ratio in the Pacific Thermocline , 1995 .

[69]  Jorge L. Sarmiento,et al.  Redfield ratios of remineralization determined by nutrient data analysis , 1994 .

[70]  J. S. Godfrey,et al.  The Mechanism for Antarctic Intermediate Water Renewal in a World Ocean Model , 1993 .

[71]  Louis I. Gordon,et al.  Oxygen solubility in seawater : better fitting equations , 1992 .

[72]  K. Buesseler Do upper-ocean sediment traps provide an accurate record of particle flux? , 1991, Nature.

[73]  J. Sarmiento,et al.  Oxygen and nitrate new production and remineralization in the North Atlantic subtropical gyre , 1990 .

[74]  M. Tomczak,et al.  Optimum multiparameter analysis of mixing in the thermocline of the eastern Indian Ocean , 1989 .

[75]  W. Broenkow,et al.  Vertex: phytoplankton/iron studies in the Gulf of Alaska , 1989 .

[76]  F. F. Pérèz,et al.  Estimation of coefficients for the calculation of "NO", "PO" and "CO", starting from the elemental composition of natural phytoplankton , 1989 .

[77]  J. Minster,et al.  Redfield ratios along isopycnal surfaces—a complementary study , 1987 .

[78]  F. Millero,et al.  A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media , 1987 .

[79]  W. Broecker,et al.  The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change , 1987 .

[80]  R. Weiss,et al.  Solubilities of chlorofluorocarbons 11 and 12 in water and seawater , 1985 .

[81]  Taro Takahashi,et al.  Sources and flow patterns of deep-ocean waters as deduced from potential temperature, salinity, and initial phosphate concentration , 1985 .

[82]  Taro Takahashi,et al.  Redfield ratio based on chemical data from isopycnal surfaces , 1985 .

[83]  J. Woods Chapter 34 The physics of Thermocline Ventilation , 1985 .

[84]  S. Kanamori,et al.  Calcium-alkalinity relationship in the North Pacific , 1982 .

[85]  H. Stommel Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Peter G. Brewer,et al.  Alkalinity changes generated by phytoplankton growth1 , 1976 .

[87]  Wallace S. Broecker,et al.  “NO”, a conservative water-mass tracer , 1974 .

[88]  C. Culberson,et al.  MEASUREMENT OF THE APPARENT DISSOCIATION CONSTANTS OF CARBONIC ACID IN SEAWATER AT ATMOSPHERIC PRESSURE1 , 1973 .