Site-Specific Covalent Labeling of RNA by Enzymatic Transglycosylation.

We demonstrate the site-specific incorporation of nucleobase derivatives bearing fluorophores or affinity labels into a short RNA stem loop recognition motif by exchange of a guanine residue. The RNA-TAG (transglycosylation at guanosine) is carried out by a bacterial (E. coli) tRNA guanine transglycosylase (TGT), whose natural substrate is the nitrogenous base PreQ1. Remarkably, we have successfully incorporated large functional groups including biotin, BODIPY, thiazole orange, and Cy7 through a polyethylene glycol linker attached to the exocyclic amine of PreQ1. Larger RNAs, such as mRNA transcripts, can be site-specifically labeled if they possess the 17-nucleotide hairpin recognition motif. The RNA-TAG methodology could facilitate the detection and manipulation of RNA molecules by enabling the direct incorporation of functional artificial nucleobases using a simple hairpin recognition element.

[1]  J. Lawrence,et al.  Nucleic Acids Research Quantitative analysis of in situ hybridization methods for the detection of actin gene expression , 2005 .

[2]  W. Xie,et al.  Chemical trapping and crystal structure of a catalytic tRNA guanine transglycosylase covalent intermediate , 2003, Nature Structural Biology.

[3]  D. Suck,et al.  Crystal structure of tRNA‐guanine transglycosylase: RNA modification by base exchange. , 1996, The EMBO journal.

[4]  Jan Ellenberg,et al.  λN-GFP: an RNA reporter system for live-cell imaging , 2007, Nature Methods.

[5]  R. Tsien,et al.  Aptamers switch on fluorescence of triphenylmethane dyes. , 2003, Journal of the American Chemical Society.

[6]  Site-specific labeling of RNA at internal ribose hydroxyl groups: terbium-assisted deoxyribozymes at work. , 2014, Journal of the American Chemical Society.

[7]  A. Curnow,et al.  tRNA-guanine Transglycosylase from Escherichia coli , 1995, The Journal of Biological Chemistry.

[8]  Paul A. Wiggins,et al.  RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. , 2014, ACS chemical biology.

[9]  A. Okamoto,et al.  Probe design for the effective fluorescence imaging of intracellular RNA. , 2013, Chemical record.

[10]  S. Kelley,et al.  Thiazole orange-peptide conjugates: sensitivity of DNA binding to chemical structure. , 2004, Organic letters.

[11]  Dennis G. Gillingham,et al.  Catalysts for RNA and DNA modification. , 2015, Current opinion in chemical biology.

[12]  J. D. Kittendorf,et al.  Transglycosylation: a mechanism for RNA modification (and editing?). , 2005, Bioorganic chemistry.

[13]  Sanjay Tyagi,et al.  Imaging intracellular RNA distribution and dynamics in living cells , 2009, Nature Methods.

[14]  S. Jaffrey,et al.  RNA Mimics of Green Fluorescent Protein , 2011, Science.

[15]  V. de Crécy-Lagard,et al.  Biosynthesis and function of posttranscriptional modifications of transfer RNAs. , 2012, Annual review of genetics.

[16]  M. Stojanović,et al.  Light-up properties of complexes between thiazole orange-small molecule conjugates and aptamers , 2009, Nucleic acids research.

[17]  L. G. Lee,et al.  Thiazole orange: a new dye for reticulocyte analysis. , 1986, Cytometry.

[18]  A. Curnow,et al.  tRNA-guanine transglycosylase from Escherichia coli: recognition of dimeric, unmodified tRNA(Tyr). , 1994, Biochimie.

[19]  A. Rentmeister,et al.  Genetically encoded tools for RNA imaging in living cells. , 2015, Current opinion in biotechnology.

[20]  A. Curnow,et al.  tRNA-guanine transglycosylase from Escherichia coli: gross tRNA structural requirements for recognition. , 1993, Biochemistry.

[21]  G. Hoops,et al.  tRNA-guanine transglycosylase from Escherichia coli: structure-activity studies investigating the role of the aminomethyl substituent of the heterocyclic substrate PreQ1. , 1995, Biochemistry.

[22]  A. Rentmeister,et al.  Bioorthogonal site-specific labeling of the 5'-cap structure in eukaryotic mRNAs. , 2014, Chemical communications.

[23]  G. Klebe,et al.  Mechanism and Substrate Specificity of tRNA–Guanine Transglycosylases (TGTs): tRNA‐Modifying Enzymes from the Three Different Kingdoms of Life Share a Common Catalytic Mechanism , 2005, Chembiochem : a European journal of chemical biology.

[24]  T. Ohgi,et al.  Novel mechanism of post-transcriptional modification of tRNA. Insertion of bases of Q precursors into tRNA by a specific tRNA transglycosylase reaction. , 1979, The Journal of biological chemistry.

[25]  P. Dervan,et al.  Sequence-specific fluorescence detection of DNA by polyamide-thiazole orange conjugates. , 2005, Journal of the American Chemical Society.

[26]  S. Olgen,et al.  Site-specific modification of Shigella flexneri virF mRNA by tRNA-guanine transglycosylase in vitro , 2007, Nucleic acids research.

[27]  K. Watanabe,et al.  A UGU sequence in the anticodon loop is a minimum requirement for recognition by Escherichia coli tRNA-guanine transglycosylase. , 1994, The Journal of biological chemistry.

[28]  Xiaosong Hu,et al.  A covalent approach for site-specific RNA labeling in Mammalian cells. , 2015, Angewandte Chemie.

[29]  A. Rentmeister,et al.  Enzymatic modification of 5′-capped RNA with a 4-vinylbenzyl group provides a platform for photoclick and inverse electron-demand Diels–Alder reaction† †Electronic supplementary information (ESI) available: See DOI: 10.1039/c4sc03182b Click here for additional data file. , 2014, Chemical science.

[30]  Allen F. Brooks,et al.  Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases , 2010, Nucleic acids research.

[31]  R. Singer,et al.  Localization of ASH1 mRNA particles in living yeast. , 1998, Molecular cell.

[32]  B. Moritz,et al.  Simple methods for the 3′ biotinylation of RNA , 2014, RNA.