Weighted T-splines with application in reparameterizing trimmed NURBS surfaces

Abstract To facilitate isogeometric analysis, this paper presents a new type of T-spline named the weighted T-spline, which introduces a new weighting idea to T-spline basis functions. Weighted T-spline basis functions satisfy partition of unity and are linearly independent. In addition, we apply the bicubic weighted T-splines to reparameterize trimmed NURBS surface patches. Edge interval extension is performed to reconstruct the trimming curve on the T-spline surface, and the trimming curve can be exactly preserved. Comparisons with standard T-splines show that the weighted T-splines can decrease the required number of control points and T-mesh elements. The surface error introduced by weighted T-spline basis functions is bounded (within 0.5%), and the error introduced by the trimming curve is constrained within its three-ring neighboring elements. Weighted T-spline models are also applied to solve the linear elasticity problems and Poisson’s equation, demonstrating that they can be used in isogeometric analysis.

[1]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[2]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[3]  Hendrik Speleers,et al.  Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..

[4]  P. Wriggers,et al.  Isogeometric large deformation frictionless contact using T-splines , 2014 .

[5]  Jiansong Deng,et al.  Modified T-splines , 2013, Comput. Aided Geom. Des..

[6]  Thomas J. R. Hughes,et al.  Volumetric T-spline construction using Boolean operations , 2014, Engineering with Computers.

[7]  Daniel Peterseim,et al.  Analysis-suitable adaptive T-mesh refinement with linear complexity , 2014, Comput. Aided Geom. Des..

[8]  H. Nguyen-Xuan,et al.  Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .

[9]  Sung-Kie Youn,et al.  Isogeometric analysis with trimming technique for problems of arbitrary complex topology , 2010 .

[10]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[11]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[12]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[13]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[14]  Tom Lyche,et al.  Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces , 1992 .

[15]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[16]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[17]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[18]  Hongwei Lin,et al.  Watertight trimmed NURBS , 2008, ACM Trans. Graph..

[19]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[20]  T. Hughes,et al.  Solid T-spline construction from boundary representations for genus-zero geometry , 2012 .

[21]  Hong Qin,et al.  Surface Mesh to Volumetric Spline Conversion with Generalized Polycubes , 2013, IEEE Transactions on Visualization and Computer Graphics.

[22]  Thomas J. R. Hughes,et al.  Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology , 2012, Comput. Aided Des..

[23]  Hong Qin,et al.  Polycube splines , 2007, Comput. Aided Des..

[24]  T. Hughes,et al.  Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline , 2012 .

[25]  C. Bona-Casas,et al.  A NURBS-based immersed methodology for fluid–structure interaction , 2015 .

[26]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[27]  G. Sangalli,et al.  Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .

[28]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[29]  Anthony E. Armenakas,et al.  Advanced Mechanics of Materials and Applied Elasticity , 2005 .

[30]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[31]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[32]  Hyun-Jung Kim,et al.  Isogeometric analysis for trimmed CAD surfaces , 2009 .

[33]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[34]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[35]  Wenping Wang,et al.  Feature-preserving T-mesh construction using skeleton-based polycubes , 2015, Comput. Aided Des..

[36]  J. M. Cascón,et al.  A new approach to solid modeling with trivariate T-splines based on mesh optimization , 2011 .

[37]  Thomas J. R. Hughes,et al.  Conformal solid T-spline construction from boundary T-spline representations , 2013 .