Anomalous Hall effect and topological Hall effect in the noncollinear antiferromagnet V0.3NbS2

[1]  Han Wang,et al.  Topological Hall transport: materials, mechanisms and potential applications , 2022, Progress in Materials Science.

[2]  Michael E. Ziebel,et al.  Coupling between magnetic order and charge transport in a two-dimensional magnetic semiconductor , 2021, Nature Materials.

[3]  M. Cuoco,et al.  Challenges in identifying chiral spin textures via the topological Hall effect , 2022, Communications Materials.

[4]  L. Prodan,et al.  Confirming the trilinear form of the optical magnetoelectric effect in the polar honeycomb antiferromagnet Co2Mo3O8 , 2021, npj Quantum Materials.

[5]  J. Sinova,et al.  Anomalous Hall antiferromagnets , 2021, Nature Reviews Materials.

[6]  Jinwoo Hwang,et al.  Tunable topological Hall effects in noncollinear antiferromagnet Mn3Sn/Pt bilayers , 2021 .

[7]  R. Mukherjee,et al.  Fractional exponents of electrical and thermal conductivity of vanadium intercalated layered 2H-NbS2 bulk crystal , 2021, Indian Journal of Physics.

[8]  A. Manchon,et al.  Topological aspects of antiferromagnets , 2021, Journal of Physics D: Applied Physics.

[9]  G. Moore,et al.  Anomalous collapses of Nares Strait ice arches leads to enhanced export of Arctic sea ice , 2021, Nature communications.

[10]  Z. Huang,et al.  Overview and advances in a layered chiral helimagnet Cr1/3NbS2 , 2020 .

[11]  S. Cabrini,et al.  Antiferromagnetic switching driven by the collective dynamics of a coexisting spin glass , 2020, Science Advances.

[12]  Y. Sun,et al.  Room-temperature angular-dependent topological Hall effect in chiral antiferromagnetic Weyl semimetal Mn3Sn , 2019, Applied Physics Letters.

[13]  J. Orenstein,et al.  Electrical switching in a magnetically intercalated transition metal dichalcogenide , 2019, Nature Materials.

[14]  X. Xi,et al.  Large topological Hall effect in a geometrically frustrated kagome magnet Fe3Sn2 , 2019, Applied Physics Letters.

[15]  Kang L. Wang,et al.  Topological Hall effect at above room temperature in heterostructures composed of a magnetic insulator and a heavy metal , 2019, Nature Electronics.

[16]  C. Felser,et al.  Magnetic and electrical transport signatures of uncompensated moments in epitaxial thin films of the noncollinear antiferromagnet Mn3Ir , 2019, Applied Physics Letters.

[17]  J. Mitchell,et al.  Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6 , 2018, Nature Communications.

[18]  Y. Tokura,et al.  Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet , 2018, Science.

[19]  C. Felser,et al.  Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal , 2017, Nature Physics.

[20]  Y. Sun,et al.  Anomalous Hall effect in two-dimensional non-collinear antiferromagnetic semiconductor Cr0.68Se , 2017, 1707.01252.

[21]  Z. H. Liu,et al.  Transition from Anomalous Hall Effect to Topological Hall Effect in Hexagonal Non-Collinear Magnet Mn3Ga , 2017, Scientific Reports.

[22]  G. Pazour,et al.  Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness , 2017, Scientific Reports.

[23]  Thomas Wolf,et al.  Anomalous Hall effect in the noncollinear antiferromagnet Mn5Si3 , 2016, 1601.01840.

[24]  C. Felser,et al.  Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge , 2015, Science Advances.

[25]  T. Higo,et al.  Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature , 2015, Nature.

[26]  C. Felser,et al.  Non-collinear antiferromagnets and the anomalous Hall effect , 2014, 1410.5985.

[27]  H. Löhneysen,et al.  Large topological Hall effect in the non-collinear phase of an antiferromagnet , 2014, Nature Communications.

[28]  T. Sakakibara,et al.  Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order , 2010, Nature.

[29]  P. Böni,et al.  Hall effect and magnetoresistance in MnSi , 2009 .

[30]  N. Nagaosa,et al.  Spin Chirality, Berry Phase, and Anomalous Hall Effect in a Frustrated Ferromagnet , 2001, Science.

[31]  W. Butler,et al.  Spin-dependent scattering and giant magnetoresistance , 1995 .

[32]  E. Hall,et al.  XVIII. On the “Rotational Coefficient” in nickel and cobalt , 1881 .

[33]  E. Hall XXXVIII. On the new action of magnetism on a permanent electric current , 1880 .

[34]  J. Takada,et al.  Structural and magnetic ordering in the VxNb1+yS2 system , 2008 .

[35]  R. Friend,et al.  3d transition-metal intercalates of the niobium and tantalum dichalcogenides. I. Magnetic properties , 1980 .

[36]  F. Hulliger,et al.  On the magnetic behavior of new 2HNbS2-type derivatives , 1970 .