Computation techniques in the conformational analysis of carbohydrates

A growing number of modern studies of carbohydrates is devoted to spatial mechanisms of their participation in the cell recognition processes and directed design of inhibitors of these processes. No progress in this field is possible without the development of theoretical conformational analysis of carbohydrates. In this review, we generalize literature data on the potentialities of using various molecular-mechanic force fields, the methods of quantum mechanics, and molecular dynamics to study the conformation of glycoside linkage. A possibility of analyzing the reactivity of carbohydrates with the computation techniques is also discussed in brief.

[1]  J. Brady,et al.  A revised potential-energy surface for molecular mechanics studies of carbohydrates. , 1988, Carbohydrate research.

[2]  I. Tvaroška,et al.  Ab initio molecular orbital calculation of carbohydrate model compounds 4. Flexibility of Ψ-type glycosidic bonds in carbohydrates , 1997 .

[3]  A. Shashkov,et al.  Synthesis, NMR, and Conformational Studies of Fucoidan Fragments. VII.1 Influence of Length and 2,3‐Branching on the Conformational Behavior of Linear (1→3)‐Linked Oligofucoside Chains , 2005 .

[4]  G. P. Johnson,et al.  Crystal structure of penta-O-acetyl-beta-D-galactopyranose with modeling of the conformation of the acetate groups. , 2002, Carbohydrate research.

[5]  B. J. Hardy,et al.  Conformational analysis of the disaccharide α-l-Rhap-(1 → 2)-α-l-Rhap-OMe: Comparison of dynamics simulations with NMR experiments , 1995 .

[6]  G. Bonanno,et al.  Water interaction with α,α-trehalose: molecular dynamics simulation , 1998 .

[7]  M. West,et al.  Dde as a Protecting Group for Carbohydrate Synthesis , 2006 .

[8]  C. W. von der Lieth,et al.  Efficient modelling protocols for oligosaccharides: from vacuum to solvent , 1997, Glycoconjugate Journal.

[9]  J. Kroon,et al.  Molecular dynamics study of conformational equilibria in aqueous d-glucose and d-galactose , 1997 .

[10]  V. Hruby,et al.  Enkephalin-based drug design: conformational analysis of O-linked glycopeptides by NMR and molecular modeling , 2000 .

[11]  A. Cerezo,et al.  Depicting the mm3 potential energy surfaces of trisaccharides by single contour maps: application to β-cellotriose and α-maltotriose , 2003 .

[12]  T. Weimar,et al.  Conformational analysis of maltoside heteroanalogues using high-quality NOE data and molecular mechanics calculations. Flexibility as a function of the interglycosidic chalcogen atom , 1999 .

[13]  J. W. Smeets,et al.  Discrimination of the two diastereoisomeric glycosides heterodendrin and epi-heterodendrin by the combined use of NOE and molecular mechanics , 1995 .

[14]  F. Westheimer A Calculation of the Energy of Activation for the Racemization of 2,2′‐Dibromo−4,4′‐Dicarboxydiphenyl , 1947 .

[15]  W. Fischer,et al.  The aqueous solution structure of a lipoteichoic acid from Streptococcus pneumoniae strain R6 containing 2,4-diamino-2,4,6-trideoxy-galactose: evidence for conformational mobility of the galactopyranose ring. , 1996, Carbohydrate research.

[16]  Jaroslav Koča,et al.  A combination of driving method with simulated annealing to search conformational space , 1997 .

[17]  Paramita Dasgupta,et al.  NMR and modelling studies of disaccharide conformation. , 2003, Carbohydrate research.

[18]  V. Box Some Consequences of Lone Pair Interactions in the Chemistry of Monosaccharides , 1982 .

[19]  B. Meyer,et al.  Influence of sulfate and carboxylate groups on the conformation of chondroitin sulfate related disaccharides. , 1993, Carbohydrate research.

[20]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[21]  François-Yves Dupradeau,et al.  AmberFFC, a flexible program to convert AMBER and GLYCAM force fields for use with commercial molecular modeling packages , 2001 .

[22]  A. Poveda,et al.  NMR studies of carbohydrate–protein interactions in solution , 1998 .

[23]  J. Desbrières,et al.  Hydration of α-maltose and amylose: molecular modelling and thermodynamics study , 1995 .

[24]  R. Zauhar,et al.  Derivation of 13C chemical shift surfaces for the anomeric carbons of oligosaccharides and glycopeptides using ab initio methodology , 2001, Journal of biomolecular NMR.

[25]  A. Usov,et al.  Synthesis, NMR and Conformational Studies of Fucoidan Fragments. V.[1] Linear 4,4′,4″‐Tri‐O‐Sulfated and Parent Non‐sulfated (1→3)‐Fucotrioside Fragments , 2003 .

[26]  A. Imberty,et al.  Stereochemical analysis of d-glucopyranosyl-sulfoxides via a combined NMR, molecular modeling and X-ray crystallographic approach , 1999 .

[27]  G. Widmalm,et al.  MMC and LD simulations of α-D-Manp-(1→2)-β-D-Glcp-OMe: comparison to long-range heteronuclear NMR coupling constants and to the crystal structure , 1998, Glycoconjugate Journal.

[28]  A. Imberty,et al.  VALIDATION OF TWO CONFORMATIONAL SEARCHING METHODS APPLIED TO SUCROSE : SIMULATION OF NMR AND CHIRO-OPTICAL DATA , 1997 .

[29]  Kenneth M. Merz,et al.  A carbohydrate force field for amber and its application to the study of saccharide to surface adsorption , 1997 .

[30]  P. B. Wyatt,et al.  C-Glycosylidene derivatives (exo-glycals): their synthesis by reaction of protected sugar lactones with tributylphosphonium ylids, conformational analysis and stereoselective reduction , 2003 .

[31]  Donald G. Truhlar,et al.  Exo-anomeric effects on energies and geometries of different conformations of glucose and related systems in the gas phase and aqueous solution , 1997 .

[32]  J. L. Willett,et al.  Computational studies on carbohydrates: in vacuo studies using a revised AMBER force field, AMB99C, designed for alpha-(1-->4) linkages. , 2000, Carbohydrate research.

[33]  J. Blanco,et al.  Conformational analysis of the Sda determinant-containing tetrasaccharide and two mimics in aqueous solution by using 1H NMR ROESY spectroscopy in combination with MD simulations , 2000, Journal of biomolecular NMR.

[34]  A. Imberty,et al.  Predicting helical structures of the exopolysaccharide produced by Lactobacillus sake 0- 1. , 1996, Carbohydrate research.

[35]  S. Pérez,et al.  The preferred conformations of the four oligomeric fragments of Rhamnogalacturonan II. , 1998, Carbohydrate research.

[36]  Homans Sw,et al.  A molecular mechanical force field for the conformational analysis of oligosaccharides: comparison of theoretical and crystal structures of Man alpha 1-3Man beta 1-4GlcNAc. , 1990 .

[37]  Kenneth M. Merz,et al.  A force field for monosaccharides and (1 → 4) linked polysaccharides , 1994, J. Comput. Chem..

[38]  C. A. Stortz,et al.  Potential energy surfaces of carrageenan models: carrabiose, beta-(1 --> 4)-linked D-galactobiose, and their sulfated derivatives. , 2002, Carbohydrate research.

[39]  Kjeld Rasmussen,et al.  Conformation and Anomer Ratio of D-Glucopyranose in Different Potential Energy Functions. , 1982 .

[40]  D. P. Dolata,et al.  Computational studies of sialyllactones: methods and uses , 1997, Glycoconjugate Journal.

[41]  A. Usov,et al.  SYNTHESIS, NMR, AND CONFORMATIONAL STUDIES OF FUCOIDAN FRAGMENTS 4[1]: 4-MONO- AND 4,4′-DISULFATED (1→3)-α-l-FUCOBIOSIDE AND 4-SULFATED FUCOSIDE FRAGMENTS , 2002 .

[42]  Igor Tvaroŝka,et al.  Anomeric and Exo-Anomeric Effects in Carbohydrate Chemistry , 1989 .

[43]  R. Lemieux,et al.  The conformational analysis of oligosaccharides by H-NMR and HSEA calculation. , 1983, Archives of biochemistry and biophysics.

[44]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998 .

[45]  Studies on the conformational behaviour of GlcNAc-Man3-GlcNAc2 oligosaccharides using molecular dynamics simulations , 1998, Glycoconjugate Journal.

[46]  I. Tvaroška,et al.  Angular dependence of vicinal carbon-proton coupling constants for conformational studies of the hydroxymethyl group in carbohydrates , 1995 .

[47]  J. Brady,et al.  Water structuring around complex solutes: theoretical modeling of α-d-glucopyranose , 1997 .

[48]  CONFORMATIONAL ANALYSIS OF A BRANCHED SUGAR IN AQUEOUS SOLUTION BASED ON MOLECULAR MECHANICS AND 1H-NMR STUDIES , 1995 .

[49]  J. Yoshida,et al.  Effect of intramolecular hydrogen-bonding network on the relative reactivities of carbohydrate OH groups† , 1999 .

[50]  T. L. Hill Steric Effects. II. General Equations. Application to Cis‐ and Trans−2‐Butene , 1948 .

[51]  A. Bérces,et al.  SYNTHESIS, NMR, AND CONFORMATIONAL STUDIES OF FUCOIDAN FRAGMENTS. III.[1] EFFECT OF BENZOYL GROUP AT O-3 ON STEREOSELECTIVITY OF GLYCOSYLATION BY 3-O- AND 3,4-DI-O-BENZOYLATED 2-O-BENZYLFUCOSYL BROMIDES , 2001 .

[52]  J. L. Asensio,et al.  Solution conformation and dynamics of the trisaccharide fragments of the O-antigen of Vibrio cholerae O1, serotypes Inaba and Ogawa. , 1999, Carbohydrate research.

[53]  Donald G. Truhlar,et al.  Relative stability of alternative chair forms and hydroxymethyl conformations of β-d-glucopyranose , 1995 .

[54]  Gabriel Cuevas,et al.  Recent studies of the anomeric effect , 1992 .

[55]  H. Urakawa,et al.  Conformation of cyclic and linear (1 → 2)-β-d-glucans in aqueous solution , 1996 .

[56]  Three-dimensional structure of a glycosphingolipid having a novel carbohydrate linkage, Gal beta 1-4(Fuc alpha 1-3)Glc beta 1-3Gal beta, determined by theoretical calculations , 1998, Glycoconjugate Journal.

[57]  D. Whitfield Orientations of carbohydrate substituents , 1997 .

[58]  M. Ragazzi,et al.  Conformational analysis of heparin epoxide: molecular mechanics computations. , 1995, Carbohydrate research.

[59]  E. Querol,et al.  NMR studies of the conformation of thiocellobiose bound to a β‐glucosidase from Streptomyces sp , 1998, FEBS letters.

[60]  The conformational properties of glycosidic linkages , 1974 .

[61]  M. Martín-Pastor,et al.  The use of the MM3∗ and ESFF force fields in conformational analysis of carbohydrate molecules in solution: The methyl α-lactoside case , 1997 .

[62]  S. Immel,et al.  Cyclofructins with six to ten β-(1→2)-linked fructofuranose units: Geometries, electrostatic profiles, lipophilicity patterns, and potential for inclusion complexation1Molecular modeling of saccharides, Part 19. For Part 18, see ref.[1].1 , 1998 .

[63]  S. Harvey,et al.  Asymmetric oscillations in cyclodextrin—a molecular dynamics study , 1987, Biopolymers.

[64]  R. Byrd,et al.  A conformation study of α-l-rhap-(1 → 2)-α-l-rhap-(1 → OMe) by NMR nuclear overhauser effect spectroscopy (NOESY) and molecular dynamics calculations , 1992 .

[65]  C. A. Stortz,et al.  Disaccharide conformational maps: 3D contours or 2D plots? , 2002, Carbohydrate research.

[66]  Robert J Woods,et al.  Computational carbohydrate chemistry: what theoretical methods can tell us , 1998, Glycoconjugate Journal.

[67]  W. Saenger,et al.  A molecular dynamics simulation of crystalline α-cyclodextrin hexahydrate , 1987, European Biophysics Journal.

[68]  P. Grootenhuis,et al.  A CHARMm Based Force Field for Carbohydrates Using the CHEAT Approach: Carbohydrate Hydroxyl Groups Represented by Extended Atoms , 1993 .

[69]  C. A. Stortz,et al.  Conformational Analysis of Sulfated α-(1→3)-Linked D-Galactobioses Using the Mm3 Force-Field , 1998 .

[70]  A. Cerezo,et al.  POTENTIAL ENERGY SURFACES OF α-(1→3)-LINKED DISACCHARIDES CALCULATED WITH THE MM3 FORCE-FIELD , 2002 .

[71]  K. Bock The preferred conformation of oligosaccharides in solution inferred from high resolution NMR data and hard sphere exo-anomeric calculations , 1983 .

[72]  A. Usov,et al.  NMR Investigation of the Influence of Sulfate Groups at C‐2 and C‐4 on the Conformational Behavior of Fucoidan Fragments with Homo‐(1→3)‐Linked Backbone# , 2006 .

[73]  Kjeld Rasmussen,et al.  A comparison and chemometric analysis of several molecular mechanics force fields and parameter sets applied to carbohydrates , 1998 .

[74]  P. Jansson,et al.  Synthesis, NMR spectroscopy and conformational studies of the four anomeric methyl glycosides of the trisaccharide D-Glcp-(1→3)-[D-Glcp-(1→4)]-α-D-Glcp , 1998 .

[75]  P. Grootenhuis,et al.  Conformational analysis of the trimannose Manα(1 → 2)[Manα(1 → 6)]Manβ using the CHEAT95 force field; evaluation of the additivity principle , 1997 .

[76]  P. Hajduk,et al.  Solution dynamics of the 1,2,3,4,6-penta-O-acetyl-α-D-idopyranose ring , 1997, Glycoconjugate Journal.

[77]  Saul Wolfe,et al.  Gauche effect. Stereochemical consequences of adjacent electron pairs and polar bonds , 1972 .

[78]  Bernd Meyer,et al.  Further justification for the exo-anomeric effect. Conformational analysis based on nuclear magnetic resonance spectroscopy of oligosaccharides , 1982 .

[79]  J. Molina,et al.  Conformational analysis of 3-deoxy-3-nitroheptoseptanosides by molecular mechanics (MM2) and theoretical 3JHH calculation , 1995 .

[80]  B. Meyer,et al.  Conformational analysis of α-d-Fuc-(1→4)-β-d-GlcNAc-OMe. One-dimensional transient NOE experiments and metropolis Monte Carlo simulations , 1993 .

[81]  Robert Eklund,et al.  Molecular dynamics simulations of an oligosaccharide using a force field modified for carbohydrates. , 2003, Carbohydrate research.

[82]  I. Tvaroška,et al.  The anomeric and exo-anomeric effects of a hydroxyl group and the stereochemistry of the hemiacetal linkage , 1998 .

[83]  G. Widmalm,et al.  Conformational analysis of methyl 6-O-[(R)- and (S)-1-carboxyethyl]-α-D-galactopyranoside by MM and Langevin dynamics simulations , 1997, Glycoconjugate Journal.

[84]  Arturo E. Smith,et al.  π-SCF-Molecular Mechanics PIMM: Formulation, parameters, applications , 1991, J. Comput. Aided Mol. Des..

[85]  I. Tvaroška,et al.  Ab initio molecular orbital calculation of carbohydrate model compounds. 2. Conformational analysis of axial and equatorial 2-methoxytetrahydropyrans , 1994 .

[86]  Andrew Almond,et al.  Towards understanding the interaction between oligosaccharides and water molecules. , 2005, Carbohydrate research.

[87]  Jan Kroon,et al.  Improved carbohydrate force field for gromos: ring and hydroxymethyl group conformations and exo-anomeric effect , 1999 .

[88]  J. Brisson,et al.  A Monte Carlo method for conformational analysis of saccharides. , 1993, Carbohydrate Research.

[89]  M. Martín-Pastor,et al.  Solution conformation and dynamics of a tetrasaccharide related to the LewisX antigen deduced by NMR relaxation measurements , 1997, Journal of biomolecular NMR.

[90]  S. Pérez,et al.  Conformational and configurational features of acidic polysaccharides and their interactions with calcium ions: a molecular modeling investigation. , 1999, Carbohydrate research.

[91]  Robert J. Woods,et al.  Molecular Mechanical and Molecular Dynamic Simulations of Glycoproteins and Oligosaccharides. 1. GLYCAM_93 Parameter Development , 1995 .

[92]  B. M. Pinto,et al.  Conformational analysis of oligosaccharides corresponding to the cell-wall polysaccharide of the Streptococcus group A by Metropolis Monte Carlo simulations. , 1995, Carbohydrate research.

[93]  Raymond A. Poirier,et al.  Optimization of transition state structures using genetic algorithms , 2000 .

[94]  B. M. Pinto,et al.  Synthesis and conformational analysis of a pentasaccharide corresponding to the cell-wall polysaccharide of the Group A Streptococcus. , 2002, Carbohydrate research.

[95]  Norman L. Allinger,et al.  Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .

[96]  M. Martín-Pastor,et al.  Experimental and theoretical evidences of conformational flexibility of C-glycosides. NMR analysis and molecular mechanics calculations of C-lactose and its O-analogue , 1995 .

[97]  Michael A. Peterson,et al.  Structure and dynamics of cellulose triacetate , 1997 .

[98]  Oleg Lukin,et al.  Dependence of the average energy between the 1:2 complexes of enantiomeric α-pinenes with α-cyclodextrin on the length of dynamic simulation , 2000 .

[99]  A. T. Hagler,et al.  Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 2. A benchmark for the objective comparison of alternative force fields , 1979 .

[100]  R. Cramer,et al.  Validation of the general purpose tripos 5.2 force field , 1989 .

[101]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[102]  P. Mager,et al.  Investigation of the conformational behaviour of permethylated cyclodextrins by molecular modelling. , 1996, Carbohydrate research.

[103]  P. Grootenhuis,et al.  Parametrization and application of CHEAT95, and extended atom force field for hydrated oligosaccharides , 1995 .

[104]  Peter J. Reilly,et al.  MM3 modeling of fructose ring shapes and hydrogen bonding , 1997 .

[105]  P. Murthy,et al.  Conformational inversion processes in phytic acid: NMR spectroscopic and molecular modeling studies , 1999 .

[106]  E. Macedo,et al.  Modeling and measurements of solid-liquid and vapor-liquid equilibria of polyols and carbohydrates in aqueous solution. , 2002, Carbohydrate research.

[107]  V. Box,et al.  Exploring the relative reactivities of the hydroxyl groups of monosaccharides by molecular modeling and molecular mechanics , 2000 .

[108]  A reinvestigation towards the conformation of methyl α-D-mannopyranosyl-(1→6)-α-D-mannopyranoside by a combined ROE and molecular dynamics analysis , 1995 .

[109]  M. Martín-Pastor,et al.  A comparison of the geometry and of the energy results obtained by application of different molecular mechanics force fields to methyl α-lactoside and the C-analogue of lactose , 1997 .

[110]  V. Box The role of lone pair interactions in the chemistry of the monosaccharides. The mechanisms of the oxidations of monosaccharides by bromine, chromium trioxide in acetic acid, and ozone , 2001 .

[111]  Carlos A. Stortz,et al.  mm3 Potential energy surfaces of the 2-linked glucosyl trisaccharides α-kojitriose and β-sophorotriose , 2003 .

[112]  W. M. Rockey,et al.  Modeling of deoxy- and dideoxyaldohexopyranosyl ring puckering with MM3(92). , 2001, Carbohydrate research.

[113]  M. Santamaría,et al.  Studies on the structure and the solution conformation of an acidic extracellular polysaccharide isolated from Bradyrhizobium. , 1997, Carbohydrate Research.

[114]  Jaroslav Koča,et al.  Comparison of force-fields parametrizations as applied to conformational analysis of ribofuranosides , 1998 .

[115]  P. Cronet,et al.  Determination by NMR spectroscopy of the structure and conformational features of the enterobacterial common antigen isolated from Escherichia coli. , 1995, Carbohydrate research.

[116]  Igor Tvaroska,et al.  Quantum mechanical and NMR spectroscopy studies on the conformations of the hydroxymethyl and methoxymethyl groups in aldohexosides. , 2002, Carbohydrate research.

[117]  B. Ho,et al.  Molecular dynamics study on lipid A from Escherichia coli: insights into its mechanism of biological action. , 2000, Biochimica et biophysica acta.

[118]  C A Stortz,et al.  Disaccharide conformational maps: how adiabatic is an adiabatic map? , 1999, Carbohydrate research.

[119]  A. Fernández-Mayoralas,et al.  Conformational differences between Fuc(alpha 1-3) GlcNAc and its thioglycoside analogue. , 1998, Carbohydrate research.

[120]  Jimmy Rosen,et al.  Conformation of the branched O-specific polysaccharide of Shigella dysenteriae type 2: molecular mechanics calculations show a compact helical structure exposing an epitope which potentially mimics galabiose. , 2002, Carbohydrate research.

[121]  G. Widmalm,et al.  Conformational studies of the two anomeric methyl glycosides of α-D-Manp-(1→2)-D-Glcp by molecular simulations and NMR 1H,1H T-ROESY experiments , 2002 .

[122]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .