Crack growth micro-mechanisms in the IN718 alloy under the combined influence of fatigue, creep and oxidation

The objective of the present study is to review the different phenomena responsible for crack growth in the IN718 nickel-base superalloy under the combination of fatigue, creep and oxidation. We review the descriptions of the micro-mechanisms found in the literature, with a special emphasis on the time-dependent effects. The changes in the microscopic appearance of fracture surfaces due to the variations in the temperature, frequency, dwell time, microstructure and partial pressure of oxygen are considered. Elucidation of these microscopic aspects of crack growth requires establishing a connection with macroscopic conditions and parameters of crack growth, and these topics are touched upon in the present review insofar it is necessary. The review allows the identification of important parameters that control component durability, and need to be included in fatigue crack growth modelling for the development of better predictive lifing assessments.

[1]  Subra Suresh,et al.  Fatigue crack deflection and fracture surface contact: Micromechanical models , 1985 .

[2]  H. Merrick Effect of heat treatment on the structure and properties of extruded P/M alloy 718 , 1976 .

[3]  L. James,et al.  Effect of Heat-Treatment Upon the Fatigue-Crack Growth Behavior of Alloy 718 Weldments—Part II: Microscopic Behavior , 1985 .

[4]  Hamid Jahed,et al.  Upper and lower fatigue life limits model using energy-based fatigue properties , 2006 .

[5]  W. Nix,et al.  Effect of oxidation kinetics on the near threshold fatigue crack growth behavior of a nickel base superalloy , 1984 .

[6]  R. Dutton,et al.  The propagation of Griffith cracks at high temperatures by mass transport processes , 1971 .

[7]  D. L. Chen,et al.  Effect of boron on the low-cycle fatigue behavior and deformation structure of INCONEL 718 at 650 °C , 2004 .

[8]  Paul Shewmon,et al.  Diffusion in Solids , 2016 .

[9]  Ming Gao,et al.  Niobium enrichment and environmental enhancement of creep crack growth in nickel-base superalloys , 1995 .

[10]  W. Cao,et al.  The Effect of Phosphorous on Mechanical Properties of Alloy 718 , 1994 .

[11]  Weixing Chen,et al.  DEPENDENCE OF CREEP FRACTURE OF INCONEL 718 ON GRAIN BOUNDARY PRECIPITATES , 1997 .

[12]  F. Leckie,et al.  Inhomogeneous deformation in INCONEL 718 during monotonic and cyclic loadings , 1990 .

[13]  Chen,et al.  Fatigue strength of Inconel 718 at elevated temperatures , 2000 .

[14]  D. Wilson Relationship of Mechanical Characteristics and Microstructural Features to the Time-Dependent Edge-Notch Sensitivity of Inconel 718 Sheet , 1973 .

[16]  D. A. Woodford,et al.  Environmental Embrittlement of High Temperature Alloys by Oxygen , 1983 .

[17]  J. Horton,et al.  Characterization of the Effects of Boron and Phosphorus Additions to the Nickel-Based Superalloy 718 , 1996 .

[18]  D. L. Chen,et al.  Near-threshold fatigue crack growth behavior of 2195 aluminum-lithium-alloy—prediction of crack propagation direction and influence of stress ratio , 2000 .

[19]  Julia King,et al.  Fatigue crack propagation in nickel-base superalloys – effects of microstructure, load ratio, and temperature , 1987 .

[20]  Henrik Andersson,et al.  In-situ SEM study of fatigue crack growth behaviour in IN718 , 2004 .

[21]  A. Rosenberger,et al.  Influence of prestraining on high temperature, low frequency fatigue crack growth in superalloys , 1993 .

[22]  M. Chaturvedi,et al.  Low-cycle fatigue behavior of INCONEL 718 superalloy with different concentrations of boron at room temperature , 2005 .

[23]  Fred Nilsson,et al.  Growth of surface cracks under constant and variable amplitude loading , 2004 .

[24]  F. Dobeš,et al.  On the kinetics of stress induced growth of grain boundary voids , 1970 .

[25]  R. Scarlin Fatigue crack propagation in a directionally-solidified nickel-base alloy , 1976 .

[26]  S. Floreen The creep fracture of wrought nickel-base alloys by a fracture mechanics approach , 1975 .

[27]  H. Ghonem,et al.  OXIDATION‐ASSISTED FATIGUE CRACK GROWTH BEHAVIOR IN ALLOY 718‐PART I. QUANTITATIVE MODELING , 1991 .

[28]  Robert P. Wei,et al.  Influence of dwell time on fatigue crack growth in nickel-base superalloys , 2002 .

[29]  D. Wilson The Dependence of the Notch Sensitivity of Waspaloy at 1000–1400 Deg F on the Gamma Prime Phase , 1973 .

[30]  Byrne,et al.  Effects of frequency on fatigue crack growth at elevated temperature , 1999 .

[31]  A. Pineau,et al.  Intergranular crack tip oxidation mechanism in a nickel-based superalloy , 1992 .

[32]  C. M. Branco,et al.  High temperature fatigue crack growth in Inconel 718 , 2000 .

[33]  B. Majumdar,et al.  ENVIRONMENTAL ASPECTS IN CREEP CRACK GROWTH IN A NICKEL BASE SUPERALLOY , 1984 .

[34]  Brigitte Weiss,et al.  A model for crack closure , 1996 .

[35]  M. Hardy,et al.  The effects of environment and loading waveform on fatigue crack growth in Inconel 718 , 1999 .

[36]  D. Hull,et al.  The growth of grain-boundary voids under stress , 1959 .

[37]  R. Wei,et al.  Evidence for internal oxidation during oxygen enhanced crack growth in P/M Ni-based superalloys , 2003 .

[38]  W. Friend Corrosion of Nickel and Nickel‐Base Alloys , 1980 .

[39]  M. Chaturvedi,et al.  Shearing of γ″ precipitates and formation of planar slip bands in Inconel 718 during cyclic deformation , 2005 .

[40]  C. G. Schmidt,et al.  EFFECTS OF AIR AND INERT ENVIRONMENTS ON THE NEAR THRESHOLD FATIGUE CRACK GROWTH BEHAVIOR OF ALLOY 718 , 1985 .

[41]  R. H. Kane,et al.  AN INVESTIGATION OF THE CREEP‐FATIGUE‐ENVIRONMENT INTERACTION IN A Ni‐BASE SUPERALLOY , 1979 .

[42]  Norio Kawagoishi,et al.  Evaluation of fatigue crack growth rate and life prediction of Inconel 718 at room and elevated temperatures , 2000 .

[43]  L. Fu,et al.  Creep crack growth in technical alloys at elevated temperature—A review☆ , 1980 .

[44]  Darrell F. Socie,et al.  Mechanics of mixed mode small fatigue crack growth , 1987 .

[45]  D. Michel,et al.  Effect of environment on fatigue crack propagation behavior of alloy 718 at elevated temperatures , 1986 .

[46]  D. Delafosse,et al.  Oxidation induced intergranular cracking and Portevin–Le Chatelier effect in nickel base superalloy 718 , 2001 .

[47]  K. Sadananda,et al.  Creep crack growth behavior of several structural alloys , 1983 .

[48]  K. Sadananda,et al.  Effects of Stress Ratio and Hold-Time on Fatigue Crack Growth in Alloy 718, , 1979 .

[49]  M. Khobaib,et al.  Effects of Stress and Stress History on the Magnitude of the Environmental Attack in Renè 80 , 1990 .

[50]  Julia King,et al.  Surface damage and near-threshold fatigue crack growth in a Ni-base superalloy in vacuum , 1982 .

[51]  A. Pineau,et al.  Fatigue behaviour of two nickel-base alloys I: Experimental results on low cycle fatigue, fatigue crack propagation and substructures , 1982 .

[52]  W. Soboyejo,et al.  Micromechanisms of fatigue crack growth in a forged Inconel 718 nickel-based superalloy , 1999 .

[53]  A. Pineau,et al.  ELEVATED TEMPERATURE FATIGUE CRACK GROWTH IN ALLOY 718—PART I: EFFECTS OF MECHANICAL VARIABLES , 1993 .

[54]  Michael F. Ashby,et al.  Intergranular fracture at elevated temperature , 1975 .

[55]  D. A. Woodford,et al.  Environmental damage of a cast nickel base superalloy , 1981 .

[56]  Marco J. Starink,et al.  Short crack initiation and growth at 600 °C in notched specimens of Inconel718 , 2003 .

[57]  A. Pineau,et al.  Low cycle fatigue behavior of inconel 718 at 298 K and 823 K , 1977 .

[58]  Herbert Herman,et al.  Treatise on Materials Science and Technology , 1979 .

[59]  J. Lopitaux,et al.  Caracterisation des premieres etapes de l'oxydation de l'alliage inconel 718 par spectrometrie I.R.F.T. , 1990 .

[60]  M. Clavel,et al.  Strain rate effects and associated deformation mode in a nickel-based alloy during low cycle fatigue testing , 1987 .

[61]  P. Reed,et al.  Mixed mode fatigue effects in Ni-base single crystals — Preliminary results , 1992 .

[62]  H. Ghonem,et al.  Depth of intergranular oxygen diffusion during environment-dependent fatigue crack growth in alloy 718 , 1992 .

[63]  A. Pineau,et al.  The effect of microstructure and environment on the crack growth behaviour of Inconel 718 alloy at 650 °C under fatigue, creep and combined loading , 1982 .

[64]  J. M. Davidson,et al.  The effects of b and zr on the creep and fatigue crack growth behavior of a Ni-base superalloy , 1983 .

[65]  R. H. Kane,et al.  Effects of environment on high-temperature fatigue crack growth in a superalloy , 1979 .

[66]  K. Chan,et al.  The crystallography of fatigue crack initiation in coarse grained astroloy at 20°C , 1989 .

[67]  M. Puls,et al.  The chemical stress applied to creep and fracture theories—I. A general approach , 1974 .

[68]  Tusit Weerasooriya,et al.  Hold-Time Effects in Elevated Temperature Fatigue Crack Propagation , 1986 .

[69]  Christer Persson,et al.  Crack growth in IN718 at high temperature , 2001 .

[70]  K. Sadananda,et al.  High-temperature crack-growth behaviour in Nimonic PE16 and Alloy 718 , 1982 .

[71]  R.J.H. Wanhill,et al.  Significance of dwell cracking for IN718 turbine discs , 2002 .

[72]  W. M. Rainforth,et al.  Fatigue damage mechanisms associated with ‘tear-drop’ cracking in UDIMET 720® , 1999 .

[73]  G. Osinkolu,et al.  Fatigue crack growth of UDIMET 720 Li superalloy at elevated temperature , 2001 .

[74]  D. S. Duvall,et al.  PRECIPITATION IN NICKEL-BASE ALLOY 718. , 1969 .

[75]  Srikumar Banerjee,et al.  Deformation behaviour of γ″ strengthened inconel 718 , 1988 .

[76]  T. Radtke,et al.  FATIGUE CRACK GROWTH IN NICKEL‐BASED SUPERALLOYS AT 500‐700°C. II: DIRECT‐AGED ALLOY 718 , 1994 .

[77]  D. Michel,et al.  Effects of thermal and thermomechanical treatments on the mechanical properties of centrifugally cast alloy 718 , 1988 .

[78]  A. Pineau,et al.  ELEVATED TEMPERATURE FATIGUE CRACK GROWTH IN ALLOY 718—PART II: EFFECTS OF ENVIRONMENTAL AND MATERIAL VARIABLES , 1993 .

[79]  A. Pineau,et al.  Frequency and wave-form effects on the fatigue crack growth behavior of alloy 718 at 298 K and 823 K , 1978 .

[80]  G. Osinkolu,et al.  Fatigue crack growth in polycrystalline IN 718 superalloy , 2003 .

[81]  G. Mccarthy,et al.  Effects of B, C, and Zr on the structure and properties of a P/M nickel base superalloy , 1987 .

[82]  W. Soboyejo,et al.  Micromechanisms of fatigue crack growth in a single crystal Inconel 718 nickel-based superalloy , 1999 .

[83]  P. Mukhopadhyay,et al.  Precipitation and Room Temperature Deformation Behaviour of Inconel 718 , 1994 .

[84]  D. Wei,et al.  The cyclic fatigue behavior of direct age 718 at 149, 315, 454 and 538 °C , 2006 .

[85]  S. Antolovich,et al.  Fatigue crack propagation behavior of a single crystalline superalloy , 1990 .

[86]  L. James The effect of grain size upon the fatigue-crack propagation behavior of alloy 718 under hold-time cycling at elevated temperature , 1986 .

[87]  J. L. Yuen,et al.  Effect of grain size on the near threshold fatigue crack propagation of a nickel base precipitation hardened superalloy , 1985 .

[88]  E. Wolf Fatigue crack closure under cyclic tension , 1970 .

[89]  U. Glatzel,et al.  Microstructure and dislocation configurations in fatigued [001] specimens of the nickel-based superalloy CMSX-6 , 1991 .

[90]  T. Weerasooriya Effect of Frequency on Fatigue Crack Growth Rate of Inconel 718 at High Temperature , 1988 .

[91]  Xiao Huang,et al.  The effect of grain boundary segregation of boron in cast alloy 718 on HAZ microfissuring: A sims analysis , 1997 .

[92]  G. Gottstein,et al.  Dislocation structures in nickel during high temperature low cycle fatigue at large cumulative strains , 1989 .

[93]  J. Newman,et al.  Mechanics of Fatigue Crack Closure , 1988 .

[94]  Eric Andrieu,et al.  Oxidation effects on the fatigue crack growth behaviour of alloy 718 at high temperature , 1997 .

[95]  D. L. Chen,et al.  Effect of boron on fatigue crack growth behavior in superalloy IN 718 at RT and 650 °C , 2006 .

[96]  J. Jones,et al.  Effects of grain size on cyclic strain localization in polycrystalline nickel , 1991 .