Refined physical properties and g ', r ', i ', z ', J, H, K transmission spectrum of WASP-23b from the ground

Context. Multi-band observations of planetary transits using the telescope defocus technique may yield high-quality light curves suitable for refining the physical properties of exoplanets even with small or medium size telescopes. Such observations can be used to construct a broad-band transmission spectrum of transiting planets and search for the presence of strong absorbers. Aims. We have thoroughly characterised the orbital ephemeris and physical properties of the transiting planet and host star in the WASP-23b system, constructed a broad-band transmission spectrum of WASP-23 b and performed a comparative analysis with theoretical models of hot Jupiters. Methods. We observed a complete transit of WASP-23 b in seven passbands simultaneously, using the GROND instrument on the MPG/ESO 2.2m telescope at La Silla Observatory and telescope defocussing. The optical data were taken in the Sloan g', r', i' and z' passbands. The resulting light curves are of high quality, with a root-mean-square scatter of the residual as low as 330 parts per million (ppm) in the z'-band, with a cadence of 90s. Near-infrared data were obtained in the JHK passbands. We performed a MCMC analysis of our photometry plus existing radial velocity data to refine measurements of the ephemeris and physical properties of the WASP-23 system. We constructed a broad-band transmission spectrum of WASP-23 b and compared it with a theoretical transmission spectrum of a hot Jupiter. Results. We measured the central transit time with a precision similar to 8 s. From this and earlier observations we obtain an orbital period of P = 2.9444300 +/- 0.0000011 d. Our analysis also yielded a larger radius and mass for the planet (R-p = 1.067(-0.038)(+0.045) R-Jup and M-p = 0.917(-0.039)(+0.040) M-Jup) compared to previous estimates (R-p = 0.962(-0.056)(+0.047) R-Jup and M-p = 0.884(-0.094)(+0.088) M-Jup). The derived transmission spectrum is marginally flat, which is not surprising given the limited precision of the measurements for the planetary radius and the poor spectral resolution of the data.

[1]  C. Moutou,et al.  Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05 μm transmission spectrum of HD 189733b with the Hubble Space Telescope , 2007, 0712.1374.

[2]  M. Honsberg,et al.  GROND—a 7-Channel Imager , 2008, 0801.4801.

[3]  D. Ehrenreich,et al.  GTC OSIRIS transiting exoplanet atmospheric survey: detection of sodium in XO-2b from differential long-slit spectroscopy† , 2012, 1208.4982.

[4]  Avi Shporer,et al.  The Transit Light Curve Project. V. System Parameters and Stellar Rotation Period of HD 189733 , 2006, astro-ph/0612224.

[5]  D. Ehrenreich,et al.  Gran Telescopio Canarias OSIRIS transiting exoplanet atmospheric survey: detection of potassium in XO-2b from narrowband spectrophotometry , 2010, 1008.4795.

[6]  Matthew J. Holman,et al.  The Use of Transit Timing to Detect Terrestrial-Mass Extrasolar Planets , 2005, Science.

[7]  B. Scott Gaudi,et al.  Achieving Better Than 1 Minute Accuracy in the Heliocentric and Barycentric Julian Dates , 2010, 1005.4415.

[8]  Massachusetts Institute of Technology,et al.  Improving Stellar and Planetary Parameters of Transiting Planet Systems: The Case of TrES-2 , 2007, 0704.2938.

[9]  A. Burrows,et al.  Theory of Extrasolar Giant Planet Transits , 2001, astro-ph/0101024.

[10]  A. P. Showman,et al.  TRANSMISSION SPECTRA OF THREE-DIMENSIONAL HOT JUPITER MODEL ATMOSPHERES , 2009, 0912.2350.

[11]  E. K. Simpson,et al.  Updated parameters for the transiting exoplanet WASP-3b using RISE, a new fast camera for the Liverpool Telescope , 2008, 0810.3526.

[12]  Gautam Vasisht,et al.  The presence of methane in the atmosphere of an extrasolar planet , 2008, Nature.

[13]  Mark S. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .

[14]  S. Bloemen,et al.  Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems , 2011 .

[15]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[16]  B. Scott Gaudi,et al.  EXOFAST: A Fast Exoplanetary Fitting Suite in IDL , 2012, 1206.5798.

[17]  M. R. Haas,et al.  A closely packed system of low-mass, low-density planets transiting Kepler-11 , 2011, Nature.

[18]  B. Enoch,et al.  The WASP Project and the SuperWASP Cameras , 2006, astro-ph/0608454.

[19]  I. Baraffe,et al.  Structure and evolution of super-Earth to super-Jupiter exoplanets - I. Heavy element enrichment in the interior , 2008, 0802.1810.

[20]  L. Mancini,et al.  Refined physical properties of the HAT‐P‐13 planetary system , 2011, 1111.5432.

[21]  J. Beaulieu,et al.  METHANE IN THE ATMOSPHERE OF THE TRANSITING HOT NEPTUNE GJ436B? , 2010, 1007.0324.

[22]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[23]  Daniel Durand,et al.  Astronomical Data Analysis Software and Systems XI , 2009 .

[24]  P. S. Bunclark,et al.  Astronomical Data Analysis Software and Systems , 2008 .

[25]  I. Hubeny,et al.  Possible Solutions to the Radius Anomalies of Transiting Giant Planets , 2006 .

[26]  Pierre Le Sidaner,et al.  Defining and cataloging exoplanets: the exoplanet.eu database , 2011, 1106.0586.

[27]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[28]  P. J. Wheatley,et al.  Physical properties and radius variations in the HAT-P-5 planetary system from simultaneous four-colour photometry , 2012, 1202.6255.

[29]  B. Fegley,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars: I. Carbon, Nitrogen, and Oxygen , 2002 .

[30]  Comparative Planetary Atmospheres: Models of TrES-1 and HD 209458b , 2005, astro-ph/0505359.

[31]  Frederic Pont,et al.  The effect of red noise on planetary transit detection , 2006, astro-ph/0608597.

[32]  Drake Deming,et al.  A SPITZER TRANSMISSION SPECTRUM FOR THE EXOPLANET GJ 436b, EVIDENCE FOR STELLAR VARIABILITY, AND CONSTRAINTS ON DAYSIDE FLUX VARIATIONS , 2011, 1104.2901.

[33]  A. Gimenez,et al.  Accurate masses and radii of normal stars: modern results and applications , 2009, 0908.2624.

[34]  Aisey M Andel ANALYTIC LIGHTCURVES FOR PLANETARY TRANSIT SEARCHES , 2002 .

[35]  S. Albrecht,et al.  Ground-based detection of sodium in the transmission spectrum of exoplanet HD209458b , 2008, 0805.0789.

[36]  D. Queloz,et al.  Detection of transits of the nearby hot Neptune GJ 436 b , 2007, Astronomy & Astrophysics.

[37]  Simon Albrecht,et al.  The signature of orbital motion from the dayside of the planet τ Boötis b , 2012, Nature.

[38]  S. Seager,et al.  A Unique Solution of Planet and Star Parameters from an Extrasolar Planet Transit Light Curve , 2002, astro-ph/0206228.

[39]  C. Moutou,et al.  High accuracy transit photometry of the planet OGLE-TR-113b with a new deconvolution-based method , 2006 .

[40]  M. Barbieri,et al.  A lower radius and mass for the transiting extrasolar planet HAT-P-8b , 2012, 1212.3701.

[41]  T. Barman,et al.  Two Classes of Hot Jupiters , 2007, 0706.3052.

[42]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[43]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[44]  M. Marley,et al.  Line and Mean Opacities for Ultracool Dwarfs and Extrasolar Planets , 2007, 0706.2374.

[45]  L. Koesterke,et al.  Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum , 2007, 0712.0761.

[46]  J. Greiner,et al.  New parameters and transit timing studies for OGLE2-TR-L9 b , 2010, 1007.0589.

[47]  David Lafreniere,et al.  NEAR-INFRARED THERMAL EMISSION FROM THE HOT JUPITER TrES-2b: GROUND-BASED DETECTION OF THE SECONDARY ECLIPSE , 2010, 1005.3027.

[48]  Jean Surdej,et al.  High-precision photometry by telescope defocusing - III. The transiting planetary system WASP-2★: High-precision defocused photometry of WASP-2 , 2010 .

[49]  Avi Shporer,et al.  THE TRANSIT LIGHT CURVE PROJECT. VIII. SIX OCCULTATIONS OF THE EXOPLANET TrES-3 , 2008, 0804.2479.

[50]  J. Greiner,et al.  WASP-4b transit observations with GROND , 2012, 1201.5727.

[51]  I. Boisse,et al.  WASP-23b: a transiting hot Jupiter around a K dwarf and its Rossiter-McLaughlin effect , 2011, 1103.2603.

[52]  T. Barman,et al.  The physical properties of extra-solar planets , 2010, 1001.3577.

[53]  N. Gibson,et al.  Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: high‐altitude atmospheric haze in the optical and near‐ultraviolet with STIS , 2011, 1103.0026.