Linear Quadratic Mean Field Type Control and Mean Field Games with Common Noise, with Application to Production of an Exhaustible Resource

We study a general linear quadratic mean field type control problem and connect it to mean field games of a similar type. The solution is given both in terms of a forward/backward system of stochastic differential equations and by a pair of Riccati equations. In certain cases, the solution to the mean field type control is also the equilibrium strategy for a class of mean field games. We use this fact to study an economic model of production of exhaustible resources.

[1]  A. Bensoussan,et al.  Existence and Uniqueness of Solutions for Bertrand and Cournot Mean Field Games , 2015, 1508.05408.

[2]  Marie-Therese Wolfram,et al.  Socio-economic applications of finite state mean field games , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  H. Pham,et al.  Bellman equation and viscosity solutions for mean-field stochastic control problem , 2015, 1512.07866.

[4]  Huyên Pham,et al.  Dynamic Programming for Optimal Control of Stochastic McKean-Vlasov Dynamics , 2016, SIAM J. Control. Optim..

[5]  Peter E. Caines,et al.  Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle , 2006, Commun. Inf. Syst..

[6]  D. Lacker A general characterization of the mean field limit for stochastic differential games , 2014, 1408.2708.

[7]  Pierre Cardaliaguet,et al.  First Order Mean Field Games with Density Constraints: Pressure Equals Price , 2015, SIAM J. Control. Optim..

[8]  Olivier Gu'eant,et al.  Mean field games equations with quadratic Hamiltonian: a specific approach , 2011, 1106.3269.

[9]  Tao Li,et al.  Asymptotically Optimal Decentralized Control for Large Population Stochastic Multiagent Systems , 2008, IEEE Transactions on Automatic Control.

[10]  Philip Jameson Graber Optimal Control of First-Order Hamilton–Jacobi Equations with Linearly Bounded Hamiltonian , 2013 .

[11]  Boualem Djehiche,et al.  Mean-Field Backward Stochastic Differential Equations . A Limit Approach ∗ , 2007 .

[12]  Olivier Guéant,et al.  Mean Field Games and Applications , 2011 .

[13]  P. Caines,et al.  Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[14]  Francisco J. Silva,et al.  A variational approach to second order mean field games with density constraints: the stationary case , 2015, 1502.06026.

[15]  R. Carmona,et al.  Control of McKean–Vlasov dynamics versus mean field games , 2012, 1210.5771.

[16]  Diogo A. Gomes,et al.  Mean Field Games Models—A Brief Survey , 2013, Dynamic Games and Applications.

[17]  T. Başar,et al.  Risk-sensitive mean field stochastic differential games , 2011 .

[18]  R. Sircar,et al.  Fracking, Renewables & Mean Field Games , 2015 .

[19]  Olivier Guéant,et al.  A reference case for mean field games models , 2009 .

[20]  S. Peng,et al.  Mean-field backward stochastic differential equations and related partial differential equations , 2007, 0711.2167.

[21]  P. Lions,et al.  Jeux à champ moyen. II – Horizon fini et contrôle optimal , 2006 .

[22]  Pierre Cardaliaguet,et al.  Weak Solutions for First Order Mean Field Games with Local Coupling , 2013, 1305.7015.

[23]  A. Lachapelle,et al.  COMPUTATION OF MEAN FIELD EQUILIBRIA IN ECONOMICS , 2010 .

[24]  Martin Burger,et al.  Partial differential equation models in the socio-economic sciences , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  Jiongmin Yong,et al.  Linear-Quadratic Optimal Control Problems for Mean-Field Stochastic Differential Equations , 2013, SIAM J. Control. Optim..

[26]  Jean-David Benamou,et al.  Variational Mean Field Games , 2017 .

[27]  Robert E. Lucas,et al.  Knowledge Growth and the Allocation of Time , 2011, Journal of Political Economy.

[28]  Jifeng Zhang,et al.  Indefinite Mean-Field Stochastic Linear-Quadratic Optimal Control , 2015, IEEE Transactions on Automatic Control.

[29]  R. Carmona,et al.  Mean Field Games and Systemic Risk , 2013, 1308.2172.

[30]  Yves Achdou,et al.  Mean Field Games: Numerical Methods for the Planning Problem , 2012, SIAM J. Control. Optim..

[31]  Olivier Guéant,et al.  Application of Mean Field Games to Growth Theory , 2008 .

[32]  R. Carmona,et al.  Mean field games with common noise , 2014, 1407.6181.

[33]  Pierre-Louis Lions,et al.  Partial differential equation models in macroeconomics , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  Saran Ahuja,et al.  Wellposedness of Mean Field Games with Common Noise under a Weak Monotonicity Condition , 2014, SIAM J. Control. Optim..

[35]  Marie-Therese Wolfram,et al.  On a mean field game approach modeling congestion and aversion in pedestrian crowds , 2011 .

[36]  Ronnie Sircar,et al.  Bertrand and Cournot Mean Field Games , 2015 .

[37]  René Carmona,et al.  Probabilistic Analysis of Mean-field Games , 2013 .

[38]  Huyên Pham,et al.  Linear quadratic optimal control of conditional McKean-Vlasov equation with random coefficients and applications , 2016, 1604.06609.

[39]  Minyi Huang,et al.  Large-Population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized $\varepsilon$-Nash Equilibria , 2007, IEEE Transactions on Automatic Control.

[40]  O. Pironneau,et al.  Dynamic programming for mean-field type control , 2014 .

[41]  Francois Delarue,et al.  The Master Equation for Large Population Equilibriums , 2014, 1404.4694.

[42]  Martino Bardi,et al.  Explicit solutions of some linear-quadratic mean field games , 2012, Networks Heterog. Media.

[43]  Yves Achdou,et al.  Mean Field Games: Numerical Methods , 2010, SIAM J. Numer. Anal..

[44]  P. Lions,et al.  Jeux à champ moyen. I – Le cas stationnaire , 2006 .

[45]  A. Bensoussan,et al.  Mean Field Games and Mean Field Type Control Theory , 2013 .

[46]  X. Zhou,et al.  Stochastic Controls: Hamiltonian Systems and HJB Equations , 1999 .

[47]  A. Bensoussan,et al.  On The Interpretation Of The Master Equation , 2015, 1503.07754.

[48]  R. Carmona,et al.  Forward-Backward Stochastic Differential Equations and Controlled McKean Vlasov Dynamics , 2013, 1303.5835.

[49]  P. Lions,et al.  Mean field games , 2007 .

[50]  P. Cardaliaguet,et al.  Second order mean field games with degenerate diffusion and local coupling , 2014, 1407.7024.

[51]  Hamidou Tembine,et al.  Robust Mean Field Games with Application to Production of an Exhaustible Resource , 2012, ROCOND.

[52]  Alain Bensoussan,et al.  Linear-Quadratic Mean Field Games , 2014, Journal of Optimization Theory and Applications.

[53]  Sean P. Meyn,et al.  A mean-field control-oriented approach to particle filtering , 2011, Proceedings of the 2011 American Control Conference.

[54]  Peter E. Caines,et al.  Social Optima in Mean Field LQG Control: Centralized and Decentralized Strategies , 2012, IEEE Transactions on Automatic Control.

[55]  Pierre Cardaliaguet,et al.  Mean field games systems of first order , 2014, 1401.1789.

[56]  P. Cardaliaguet,et al.  Mean Field Games , 2020, Lecture Notes in Mathematics.

[57]  Aimé Lachapelle,et al.  Human Crowds and Groups Interactions: a Mean Field Games Approach , 2010 .