A 45nm 0.5V 8T column-interleaved SRAM with on-chip reference selection loop for sense-amplifier

8T bit-cells hold great promise for overcoming device variability in deeply scaled SRAMs and enabling aggressive voltage scaling for ultra-low-power. This paper presents an array architecture and circuits with minimal area overhead to allow column-interleaving while eliminating the half-select problem. This enables sense-amplifier sharing and soft-error immunity. A reference selection loop is designed and implemented in the column circuitry. By choosing one of the two reference voltages for each sense-amplifier in a pseudo-differential scheme, selection loop effectively reduces input offset. 8T test array fabricated in 45nm CMOS achieves functionality from 1.1V to below 0.5V. Test chip operates at 450MHz at 1.1V and 5.8MHz at 0.5V while consuming 12.9mW and 46μW respectively.

[1]  Anna W. Topol,et al.  Stable SRAM cell design for the 32 nm node and beyond , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[2]  H. Fujiwara,et al.  An Area-Conscious Low-Voltage-Oriented 8T-SRAM Design under DVS Environment , 2007, 2007 IEEE Symposium on VLSI Circuits.

[3]  Kaushik Roy,et al.  A 32kb 10T Subthreshold SRAM Array with Bit-Interleaving and Differential Read Scheme in 90nm CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[4]  W. Huott,et al.  6.6+ GHz Low Vmin, read and half select disturb-free 1.2 Mb SRAM , 2007, 2007 IEEE Symposium on VLSI Circuits.

[5]  M. Yamaoka,et al.  A cell-activation-time controlled SRAM for low-voltage operation in DVFS SoCs using dynamic stability analysis , 2008, ESSCIRC 2008 - 34th European Solid-State Circuits Conference.

[6]  Naveen Verma,et al.  A 65nm 8T Sub-Vt SRAM Employing Sense-Amplifier Redundancy , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[7]  Atsushi Kawasumi,et al.  A Single-Power-Supply 0.7V 1GHz 45nm SRAM with An Asymmetrical Unit-ß-ratio Memory Cell , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[8]  W. Dehaene,et al.  A 3.6pJ/access 480MHz, 128Kbit on-Chip SRAM with 850MHz boost mode in 90nm CMOS with tunable sense amplifiers to cope with variability , 2008, ESSCIRC 2008 - 34th European Solid-State Circuits Conference.

[9]  T. Sasaki,et al.  A 0.7V single-supply SRAM with 0.495um2 cell in 65nm technology utilizing self-write-back sense amplifier and cascaded bit line scheme , 2008, 2008 IEEE Symposium on VLSI Circuits.