A 45nm 0.5V 8T column-interleaved SRAM with on-chip reference selection loop for sense-amplifier
暂无分享,去创建一个
[1] Anna W. Topol,et al. Stable SRAM cell design for the 32 nm node and beyond , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..
[2] H. Fujiwara,et al. An Area-Conscious Low-Voltage-Oriented 8T-SRAM Design under DVS Environment , 2007, 2007 IEEE Symposium on VLSI Circuits.
[3] Kaushik Roy,et al. A 32kb 10T Subthreshold SRAM Array with Bit-Interleaving and Differential Read Scheme in 90nm CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.
[4] W. Huott,et al. 6.6+ GHz Low Vmin, read and half select disturb-free 1.2 Mb SRAM , 2007, 2007 IEEE Symposium on VLSI Circuits.
[5] M. Yamaoka,et al. A cell-activation-time controlled SRAM for low-voltage operation in DVFS SoCs using dynamic stability analysis , 2008, ESSCIRC 2008 - 34th European Solid-State Circuits Conference.
[6] Naveen Verma,et al. A 65nm 8T Sub-Vt SRAM Employing Sense-Amplifier Redundancy , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.
[7] Atsushi Kawasumi,et al. A Single-Power-Supply 0.7V 1GHz 45nm SRAM with An Asymmetrical Unit-ß-ratio Memory Cell , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.
[8] W. Dehaene,et al. A 3.6pJ/access 480MHz, 128Kbit on-Chip SRAM with 850MHz boost mode in 90nm CMOS with tunable sense amplifiers to cope with variability , 2008, ESSCIRC 2008 - 34th European Solid-State Circuits Conference.
[9] T. Sasaki,et al. A 0.7V single-supply SRAM with 0.495um2 cell in 65nm technology utilizing self-write-back sense amplifier and cascaded bit line scheme , 2008, 2008 IEEE Symposium on VLSI Circuits.