TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. I. PROPERTIES OF A QUASI-KERR SPACETIME

According to the no-hair theorem, an astrophysical black hole is uniquely described by only two quantities, the mass and the spin. In this series of papers, we investigate a framework for testing the no-hair theorem with observations of black holes in the electromagnetic spectrum. We formulate our approach in terms of a parametric spacetime which contains a quadrupole moment that is independent of both mass and spin. If the no-hair theorem is correct, then any deviation of the black hole quadrupole moment from its Kerr value has to be zero. We analyze in detail the properties of this quasi-Kerr spacetime that are critical to interpreting observations of black holes and demonstrate their dependence on the spin and quadrupole moment. In particular, we show that the location of the innermost stable circular orbit and the gravitational lensing experienced by photons are affected significantly at even modest deviations of the quadrupole moment from the value predicted by the no-hair theorem. We argue that observations of black hole images, of relativistically broadened iron lines, as well as of thermal X-ray spectra from accreting black holes will lead in the near future to an experimental test of the no-hair theorem.

[1]  Henri Poincaré,et al.  Sur un théorème de géométrie , 1912 .

[2]  J. Oppenheimer,et al.  On Continued Gravitational Contraction , 1939 .

[3]  A. Papapetrou Eine rotationssymmetrische Lösung in der allgemeinen Relativitätstheorie , 1953 .

[4]  R. Kerr,et al.  Gravitational field of a spinning mass as an example of algebraically special metrics , 1963 .

[5]  E. Newman,et al.  Metric of a Rotating, Charged Mass , 1965 .

[6]  R. Penrose Gravitational collapse and spacetime singularities , 1965 .

[7]  Werner Israel,et al.  Event Horizons in Static Vacuum Space-Times , 1967 .

[8]  J. Hartle Slowly Rotating Relativistic Stars. I. Equations of Structure , 1967 .

[9]  F. J. Ernst NEW FORMULATION OF THE AXIALLY SYMMETRIC GRAVITATIONAL FIELD PROBLEM. II. , 1968 .

[10]  Werner Israel,et al.  Event horizons in static electrovac space-times , 1968 .

[11]  B. Carter Global structure of the Kerr family of gravitational fields , 1968 .

[12]  J. Hartle,et al.  Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars , 1968 .

[13]  R. Geroch Multipole Moments. II. Curved Space , 1970 .

[14]  Brandon Carter,et al.  Axisymmetric Black Hole Has Only Two Degrees of Freedom , 1971 .

[15]  S. Hawking Black holes in general relativity , 1972 .

[16]  R. Price Nonspherical Perturbations of Relativistic Gravitational Collapse. II. Integer-Spin, Zero-Rest-Mass Fields , 1972 .

[17]  R. Price,et al.  Nonspherical Perturbations of Relativistic Gravitational Collapse. I. Scalar and Gravitational Perturbations , 1972 .

[18]  William H. Press,et al.  Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation , 1972 .

[19]  R. O. Hansen Multipole moments of stationary space-times , 1974 .

[20]  C. Cunningham The effects of redshifts and focusing on the spectrum of an accretion disk around a Kerr black hole , 1975 .

[21]  D. C. Robinson Uniqueness of the Kerr black hole , 1975 .

[22]  D. Raine General relativity , 1980, Nature.

[23]  K. Thorne Multipole expansions of gravitational radiation , 1980 .

[24]  R. Beig,et al.  Proof of a multipole conjecture due to Geroch , 1980 .

[25]  F. J. Ernst,et al.  Proof of a Geroch conjecture , 1981 .

[26]  R. Beig,et al.  On the multipole expansion for stationary space-times , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[27]  P. Mazur PROOF OF UNIQUENESS OF THE KERR-NEWMAN BLACK HOLE SOLUTION , 1982 .

[28]  Subrahmanyan Chandrasekhar,et al.  The Mathematical Theory of Black Holes , 1983 .

[29]  W. Dietz HKK transfornatlons: Some results , 1984 .

[30]  Lee,et al.  Mini-soliton stars. , 1987, Physical review. D, Particles and fields.

[31]  Membrane viewpoint on black holes: Gravitational perturbations of the horizon. , 1988, Physical review. D, Particles and fields.

[32]  C. Hoenselaers,et al.  Multipole moments of axisymmetric systems in relativity , 1989 .

[33]  N. M. Queen,et al.  Oscillations and Waves , 1991 .

[34]  N. Sibgatullin,et al.  Oscillations and Waves in Strong Gravitational and Electromagnetic Fields. , 1991 .

[35]  V. S. Manko,et al.  Generalizations of the Kerr and Kerr-Newman metrics possessing an arbitrary set of mass-multipole moments , 1992 .

[36]  N. Sibgatullin,et al.  Construction of exact solutions of the Einstein-Maxwell equations corresponding to a given behaviour of the Ernst potentials on the symmetry axis , 1993 .

[37]  John Kormendy,et al.  Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .

[38]  F. D. Ryan,et al.  Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments. , 1995, Physical review. D, Particles and fields.

[39]  Scalar waves produced by a scalar charge orbiting a massive body with arbitrary multipole moments , 1997 .

[40]  Wei Cui,et al.  To appear in The Astrophysical Journal Letters BLACK HOLE SPIN IN X-RAY BINARIES: OBSERVATIONAL CONSEQUENCES II , 1997 .

[41]  Michael R. Garcia,et al.  � 1997. The American Astronomical Society. All rights reserved. Printed in U.S.A. ADVECTION-DOMINATED ACCRETION AND BLACK HOLE EVENT HORIZONS , 1996 .

[42]  F. D. Ryan Accuracy of estimating the multipole moments of a massive body from the gravitational waves of a binary inspiral , 1997 .

[43]  Innermost stable circular orbits around relativistic rotating stars , 1998, gr-qc/9807046.

[44]  E. Poisson,et al.  Quadrupole Moments of Rotating Neutron Stars , 1997, gr-qc/9709033.

[45]  N. Wex,et al.  Frame Dragging and Other Precessional Effects in Black Hole Pulsar Binaries , 1998, astro-ph/9811052.

[46]  J. Heyl,et al.  On the Lack of Type I X-Ray Bursts in Black Hole X-Ray Binaries: Evidence for the Event Horizon? , 2002, astro-ph/0203089.

[47]  Approximate matching of analytic and numerical solutions for rapidly rotating neutron stars , 2003, gr-qc/0310061.

[48]  Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits , 2004, gr-qc/0402063.

[49]  D. Psaltis Accreting Neutron Stars and Black Holes: A Decade of Discoveries , 2004, astro-ph/0410536.

[50]  Curt Cutler,et al.  LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy , 2003, gr-qc/0310125.

[51]  On the lack of thermal emission from the quiescent black hole XTE J1118+480: Evidence for the event horizon , 2004, astro-ph/0403251.

[52]  Rotating neutron stars: an invariant comparison of approximate and numerical space-time models , 2005 .

[53]  L. Brenneman,et al.  Constraining Black Hole Spin via X-Ray Spectroscopy , 2006, astro-ph/0608502.

[54]  W. Lewin,et al.  Compact stellar X-ray sources , 2006 .

[55]  J. McClintock,et al.  Compact Stellar X-Ray Sources: Black hole binaries , 2006 .

[56]  Estimating the Spin of Stellar-Mass Black Holes by Spectral Fitting of the X-Ray Continuum , 2005, astro-ph/0508302.

[57]  Calculation of, and bounds for, the multipole moments of stationary spacetimes , 2006, gr-qc/0606115.

[58]  S. Babak,et al.  Mapping spacetimes with LISA: inspiral of a test body in a ‘quasi-Kerr’ field , 2005, gr-qc/0510057.

[59]  Using LISA extreme-mass-ratio inspiral sources to test off-Kerr deviations in the geometry of massive black holes , 2006, gr-qc/0612029.

[60]  A. Niell,et al.  Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre , 2008, Nature.

[61]  A. Loeb,et al.  ESTIMATING THE PARAMETERS OF SAGITTARIUS A*'s ACCRETION FLOW VIA MILLIMETER VLBI , 2008, 0809.4490.

[62]  Jeandrew Brink Spacetime encodings. I. A spacetime reconstruction problem , 2008, 0807.1178.

[63]  J. Gair,et al.  Observable properties of orbits in exact bumpy spacetimes , 2007, 0708.0628.

[64]  Jessica R. Lu,et al.  Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.

[65]  Clifford M. Will,et al.  Testing the General Relativistic “No-Hair” Theorems Using the Galactic Center Black Hole Sagittarius A* , 2007, 0711.1677.

[66]  Kerr Black Holes are Not Unique to General Relativity , 2008 .

[67]  M. Visser,et al.  Fate of gravitational collapse in semiclassical gravity , 2007, 0712.1130.

[68]  Generalization of Ryan's theorem: Probing tidal coupling with gravitational waves from nearly circular, nearly equatorial, extreme-mass-ratio inspirals , 2007, gr-qc/0702146.

[69]  D. Bini,et al.  Generalized Kerr spacetime with an arbitrary mass quadrupole moment: geometric properties versus particle motion , 2009, 0909.4150.

[70]  G. Fodor,et al.  Quadrupole moment of slowly rotating fluid balls , 2008, 0812.1283.

[71]  R. Genzel,et al.  MONITORING STELLAR ORBITS AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 2008, 0810.4674.

[72]  F. Pretorius,et al.  Dynamical Chern-Simons modified gravity: Spinning black holes in the slow-rotation approximation , 2009, 0902.4669.

[73]  S. Hughes,et al.  Spacetimes and orbits of Bumpy Black Holes , 2009, 0911.1756.

[74]  C. Sopuerta,et al.  Extreme- and intermediate-mass ratio inspirals in dynamical Chern-Simons modified gravity , 2009, 0904.4501.

[75]  University of Leicester,et al.  Spin and Relativistic Phenomena Around Black Holes , 2009 .

[76]  G. Contopoulos,et al.  How to observe a non-Kerr spacetime using gravitational waves. , 2009, Physical review letters.

[77]  Measuring the Spins of Stellar Black Holes: A Progress Report , 2009, 0911.5408.

[78]  C. Will,et al.  Testing properties of the Galactic center black hole using stellar orbits , 2009, 0911.4718.

[79]  Jeandrew Brink Formal solution of the fourth order Killing equations for stationary axisymmetric vacuum spacetimes , 2009, 0911.4161.