TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. I. PROPERTIES OF A QUASI-KERR SPACETIME
暂无分享,去创建一个
[1] Henri Poincaré,et al. Sur un théorème de géométrie , 1912 .
[2] J. Oppenheimer,et al. On Continued Gravitational Contraction , 1939 .
[3] A. Papapetrou. Eine rotationssymmetrische Lösung in der allgemeinen Relativitätstheorie , 1953 .
[4] R. Kerr,et al. Gravitational field of a spinning mass as an example of algebraically special metrics , 1963 .
[5] E. Newman,et al. Metric of a Rotating, Charged Mass , 1965 .
[6] R. Penrose. Gravitational collapse and spacetime singularities , 1965 .
[7] Werner Israel,et al. Event Horizons in Static Vacuum Space-Times , 1967 .
[8] J. Hartle. Slowly Rotating Relativistic Stars. I. Equations of Structure , 1967 .
[9] F. J. Ernst. NEW FORMULATION OF THE AXIALLY SYMMETRIC GRAVITATIONAL FIELD PROBLEM. II. , 1968 .
[10] Werner Israel,et al. Event horizons in static electrovac space-times , 1968 .
[11] B. Carter. Global structure of the Kerr family of gravitational fields , 1968 .
[12] J. Hartle,et al. Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars , 1968 .
[13] R. Geroch. Multipole Moments. II. Curved Space , 1970 .
[14] Brandon Carter,et al. Axisymmetric Black Hole Has Only Two Degrees of Freedom , 1971 .
[15] S. Hawking. Black holes in general relativity , 1972 .
[16] R. Price. Nonspherical Perturbations of Relativistic Gravitational Collapse. II. Integer-Spin, Zero-Rest-Mass Fields , 1972 .
[17] R. Price,et al. Nonspherical Perturbations of Relativistic Gravitational Collapse. I. Scalar and Gravitational Perturbations , 1972 .
[18] William H. Press,et al. Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation , 1972 .
[19] R. O. Hansen. Multipole moments of stationary space-times , 1974 .
[20] C. Cunningham. The effects of redshifts and focusing on the spectrum of an accretion disk around a Kerr black hole , 1975 .
[21] D. C. Robinson. Uniqueness of the Kerr black hole , 1975 .
[22] D. Raine. General relativity , 1980, Nature.
[23] K. Thorne. Multipole expansions of gravitational radiation , 1980 .
[24] R. Beig,et al. Proof of a multipole conjecture due to Geroch , 1980 .
[25] F. J. Ernst,et al. Proof of a Geroch conjecture , 1981 .
[26] R. Beig,et al. On the multipole expansion for stationary space-times , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[27] P. Mazur. PROOF OF UNIQUENESS OF THE KERR-NEWMAN BLACK HOLE SOLUTION , 1982 .
[28] Subrahmanyan Chandrasekhar,et al. The Mathematical Theory of Black Holes , 1983 .
[29] W. Dietz. HKK transfornatlons: Some results , 1984 .
[30] Lee,et al. Mini-soliton stars. , 1987, Physical review. D, Particles and fields.
[31] Membrane viewpoint on black holes: Gravitational perturbations of the horizon. , 1988, Physical review. D, Particles and fields.
[32] C. Hoenselaers,et al. Multipole moments of axisymmetric systems in relativity , 1989 .
[33] N. M. Queen,et al. Oscillations and Waves , 1991 .
[34] N. Sibgatullin,et al. Oscillations and Waves in Strong Gravitational and Electromagnetic Fields. , 1991 .
[35] V. S. Manko,et al. Generalizations of the Kerr and Kerr-Newman metrics possessing an arbitrary set of mass-multipole moments , 1992 .
[36] N. Sibgatullin,et al. Construction of exact solutions of the Einstein-Maxwell equations corresponding to a given behaviour of the Ernst potentials on the symmetry axis , 1993 .
[37] John Kormendy,et al. Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .
[38] F. D. Ryan,et al. Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments. , 1995, Physical review. D, Particles and fields.
[39] Scalar waves produced by a scalar charge orbiting a massive body with arbitrary multipole moments , 1997 .
[40] Wei Cui,et al. To appear in The Astrophysical Journal Letters BLACK HOLE SPIN IN X-RAY BINARIES: OBSERVATIONAL CONSEQUENCES II , 1997 .
[41] Michael R. Garcia,et al. � 1997. The American Astronomical Society. All rights reserved. Printed in U.S.A. ADVECTION-DOMINATED ACCRETION AND BLACK HOLE EVENT HORIZONS , 1996 .
[42] F. D. Ryan. Accuracy of estimating the multipole moments of a massive body from the gravitational waves of a binary inspiral , 1997 .
[43] Innermost stable circular orbits around relativistic rotating stars , 1998, gr-qc/9807046.
[44] E. Poisson,et al. Quadrupole Moments of Rotating Neutron Stars , 1997, gr-qc/9709033.
[45] N. Wex,et al. Frame Dragging and Other Precessional Effects in Black Hole Pulsar Binaries , 1998, astro-ph/9811052.
[46] J. Heyl,et al. On the Lack of Type I X-Ray Bursts in Black Hole X-Ray Binaries: Evidence for the Event Horizon? , 2002, astro-ph/0203089.
[47] Approximate matching of analytic and numerical solutions for rapidly rotating neutron stars , 2003, gr-qc/0310061.
[48] Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits , 2004, gr-qc/0402063.
[49] D. Psaltis. Accreting Neutron Stars and Black Holes: A Decade of Discoveries , 2004, astro-ph/0410536.
[50] Curt Cutler,et al. LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy , 2003, gr-qc/0310125.
[51] On the lack of thermal emission from the quiescent black hole XTE J1118+480: Evidence for the event horizon , 2004, astro-ph/0403251.
[52] Rotating neutron stars: an invariant comparison of approximate and numerical space-time models , 2005 .
[53] L. Brenneman,et al. Constraining Black Hole Spin via X-Ray Spectroscopy , 2006, astro-ph/0608502.
[54] W. Lewin,et al. Compact stellar X-ray sources , 2006 .
[55] J. McClintock,et al. Compact Stellar X-Ray Sources: Black hole binaries , 2006 .
[56] Estimating the Spin of Stellar-Mass Black Holes by Spectral Fitting of the X-Ray Continuum , 2005, astro-ph/0508302.
[57] Calculation of, and bounds for, the multipole moments of stationary spacetimes , 2006, gr-qc/0606115.
[58] S. Babak,et al. Mapping spacetimes with LISA: inspiral of a test body in a ‘quasi-Kerr’ field , 2005, gr-qc/0510057.
[59] Using LISA extreme-mass-ratio inspiral sources to test off-Kerr deviations in the geometry of massive black holes , 2006, gr-qc/0612029.
[60] A. Niell,et al. Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre , 2008, Nature.
[61] A. Loeb,et al. ESTIMATING THE PARAMETERS OF SAGITTARIUS A*'s ACCRETION FLOW VIA MILLIMETER VLBI , 2008, 0809.4490.
[62] Jeandrew Brink. Spacetime encodings. I. A spacetime reconstruction problem , 2008, 0807.1178.
[63] J. Gair,et al. Observable properties of orbits in exact bumpy spacetimes , 2007, 0708.0628.
[64] Jessica R. Lu,et al. Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.
[65] Clifford M. Will,et al. Testing the General Relativistic “No-Hair” Theorems Using the Galactic Center Black Hole Sagittarius A* , 2007, 0711.1677.
[66] Kerr Black Holes are Not Unique to General Relativity , 2008 .
[67] M. Visser,et al. Fate of gravitational collapse in semiclassical gravity , 2007, 0712.1130.
[68] Generalization of Ryan's theorem: Probing tidal coupling with gravitational waves from nearly circular, nearly equatorial, extreme-mass-ratio inspirals , 2007, gr-qc/0702146.
[69] D. Bini,et al. Generalized Kerr spacetime with an arbitrary mass quadrupole moment: geometric properties versus particle motion , 2009, 0909.4150.
[70] G. Fodor,et al. Quadrupole moment of slowly rotating fluid balls , 2008, 0812.1283.
[71] R. Genzel,et al. MONITORING STELLAR ORBITS AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 2008, 0810.4674.
[72] F. Pretorius,et al. Dynamical Chern-Simons modified gravity: Spinning black holes in the slow-rotation approximation , 2009, 0902.4669.
[73] S. Hughes,et al. Spacetimes and orbits of Bumpy Black Holes , 2009, 0911.1756.
[74] C. Sopuerta,et al. Extreme- and intermediate-mass ratio inspirals in dynamical Chern-Simons modified gravity , 2009, 0904.4501.
[75] University of Leicester,et al. Spin and Relativistic Phenomena Around Black Holes , 2009 .
[76] G. Contopoulos,et al. How to observe a non-Kerr spacetime using gravitational waves. , 2009, Physical review letters.
[77] Measuring the Spins of Stellar Black Holes: A Progress Report , 2009, 0911.5408.
[78] C. Will,et al. Testing properties of the Galactic center black hole using stellar orbits , 2009, 0911.4718.
[79] Jeandrew Brink. Formal solution of the fourth order Killing equations for stationary axisymmetric vacuum spacetimes , 2009, 0911.4161.