Theoretical principles of multiscale spatiotemporal control of neuronal networks: a complex systems perspective

Success in the fine control of the nervous system depends on a deeper understanding of how neural circuits control behavior. There is, however, a wide gap between the components of neural circuits and behavior. We advance the idea that a suitable approach for narrowing this gap has to be based on a multiscale information-theoretic description of the system. We evaluate the possibility that brain-wide complex neural computations can be dissected into a hierarchy of computational motifs that rely on smaller circuit modules interacting at multiple scales. In doing so, we draw attention to the importance of formalizing the goals of stimulation in terms of neural computations so that the possible implementations are matched in scale to the underlying circuit modules.

[1]  Christian K. Machens,et al.  Variability in neural activity and behavior , 2014, Current Opinion in Neurobiology.

[2]  Yee Lian Chew,et al.  Network control principles predict neuron function in the Caenorhabditis elegans connectome , 2017, Nature.

[3]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[4]  Gilles Laurent,et al.  Transient Dynamics for Neural Processing , 2008, Science.

[5]  Tomaso Poggio,et al.  From Understanding Computation to Understanding Neural Circuitry , 1976 .

[6]  Albert-László Barabási,et al.  Controllability of complex networks , 2011, Nature.

[7]  Aravinthan D. T. Samuel,et al.  Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans , 2011, Nature Methods.

[8]  B. C. Motter,et al.  Neural correlates of feature selective memory and pop-out in extrastriate area V4 , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  Stefan Bornholdt,et al.  Topology of biological networks and reliability of information processing , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Barry B. Lee,et al.  Suppressive Surrounds and Contrast Gain in Magnocellular-Pathway Retinal Ganglion Cells of Macaque , 2006, The Journal of Neuroscience.

[11]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[12]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[13]  N. J. Davis,et al.  “Non-invasive” brain stimulation is not non-invasive , 2013, Front. Syst. Neurosci..

[14]  T. H. A History of the Theories of Aether and Electricity from the Age of Descartes to the Close of the Nineteenth Century , 1911, Nature.

[15]  E. Marder,et al.  Similar network activity from disparate circuit parameters , 2004, Nature Neuroscience.

[16]  Noah J. Cowan,et al.  Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks , 2011, PloS one.

[17]  Francesco Bullo,et al.  Controllability Metrics, Limitations and Algorithms for Complex Networks , 2014, IEEE Trans. Control. Netw. Syst..

[18]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[19]  A history of the theories of aether and electricity from the age of Descartes to the close of the nineteenth century / by E.T. Whittaker ... , 1910 .

[20]  E. Marder Variability, compensation, and modulation in neurons and circuits , 2011, Proceedings of the National Academy of Sciences.

[21]  Christian K. Machens,et al.  Predictive Coding of Dynamical Variables in Balanced Spiking Networks , 2013, PLoS Comput. Biol..

[22]  E. Seidemann,et al.  Temporal gating of neural signals during performance of a visual discrimination task , 1998, Nature.

[23]  R. Douglas,et al.  Mapping the Matrix: The Ways of Neocortex , 2007, Neuron.

[24]  M. Carandini From circuits to behavior: a bridge too far? , 2012, Nature Neuroscience.

[25]  R. Laughlin Physics, Emergence, and the Connectome , 2014, Neuron.

[26]  D Marr,et al.  Simple memory: a theory for archicortex. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[27]  Celso Grebogi,et al.  Using small perturbations to control chaos , 1993, Nature.

[28]  G. Sussman,et al.  Chaotic Evolution of the Solar System , 1992, Science.

[29]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[30]  S. Pincus,et al.  Randomness and degrees of irregularity. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[31]  A L Goldberger,et al.  Physiological time-series analysis: what does regularity quantify? , 1994, The American journal of physiology.

[32]  Hava T. Siegelmann,et al.  Analog computation via neural networks , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[33]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[34]  G. Shepherd,et al.  The neocortical circuit: themes and variations , 2015, Nature Neuroscience.

[35]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[36]  F. Müller,et al.  Few inputs can reprogram biological networks , 2011, Nature.

[37]  H. Sompolinsky,et al.  Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity , 1996, Science.

[38]  Eero P. Simoncelli,et al.  How MT cells analyze the motion of visual patterns , 2006, Nature Neuroscience.

[39]  Matthew C Smear,et al.  Precise olfactory responses tile the sniff cycle , 2011, Nature Neuroscience.

[40]  Anatol C. Kreitzer,et al.  Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry , 2010, Nature.

[41]  D. Marr A theory for cerebral neocortex , 1970, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[42]  A. Benabid,et al.  Effect on parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation , 1995, The Lancet.

[43]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[44]  Dean V. Buonomano,et al.  ROBUST TIMING AND MOTOR PATTERNS BY TAMING CHAOS IN RECURRENT NEURAL NETWORKS , 2012, Nature Neuroscience.

[45]  J. Langston,et al.  Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. , 1983, Science.

[46]  A. Faisal,et al.  Noise in the nervous system , 2008, Nature Reviews Neuroscience.

[47]  M. Kramer,et al.  Beyond the Connectome: The Dynome , 2014, Neuron.

[48]  W. Ditto,et al.  Controlling chaos in the brain , 1994, Nature.

[49]  H. Sebastian Seung,et al.  Neuroscience: Towards functional connectomics , 2011, Nature.

[50]  E. Marder,et al.  Variability, compensation and homeostasis in neuron and network function , 2006, Nature Reviews Neuroscience.

[51]  G. Fritsch,et al.  Electric excitability of the cerebrum (Über die elektrische Erregbarkeit des Grosshirns) , 2009, Epilepsy & Behavior.

[52]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[54]  H. Bergman,et al.  Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. , 1990, Science.

[55]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[56]  Zenon W. Pylyshyn,et al.  Computation and Cognition: Toward a Foundation for Cognitive Science , 1984 .

[57]  Tatsuya Akutsu,et al.  Structural controllability of unidirectional bipartite networks , 2013, Scientific Reports.

[58]  E. Rolls David Marr's Vision: floreat computational neuroscience , 2011 .

[59]  HERBERT A. SIMON,et al.  The Architecture of Complexity , 1991 .

[60]  Ron McClamrock,et al.  Marr's three levels: A re-evaluation , 1991, Minds and Machines.

[61]  D. Kleinfeld,et al.  ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation , 2013, Nature Neuroscience.

[62]  A. Litwin-Kumar,et al.  Slow dynamics and high variability in balanced cortical networks with clustered connections , 2012, Nature Neuroscience.

[63]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[64]  Tomaso A. Poggio,et al.  A Canonical Neural Circuit for Cortical Nonlinear Operations , 2008, Neural Computation.

[65]  Byron M. Yu,et al.  Dimensionality reduction for large-scale neural recordings , 2014, Nature Neuroscience.

[66]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[67]  A. Destexhe,et al.  The high-conductance state of neocortical neurons in vivo , 2003, Nature Reviews Neuroscience.

[68]  James J DiCarlo,et al.  Multiple Object Response Normalization in Monkey Inferotemporal Cortex , 2005, The Journal of Neuroscience.

[69]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[70]  S. P. Cornelius,et al.  Realistic control of network dynamics , 2013, Nature Communications.

[71]  Marco Bresadola,et al.  Medicine and science in the life of Luigi Galvani (1737–1798) , 1998, Brain Research Bulletin.

[72]  H. Barlow Vision: A computational investigation into the human representation and processing of visual information: David Marr. San Francisco: W. H. Freeman, 1982. pp. xvi + 397 , 1983 .

[73]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[74]  P. Anderson More is different. , 1972, Science.

[75]  K. Deisseroth,et al.  Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning , 2009, Science.

[76]  H T Siegelmann,et al.  Dating and Context of Three Middle Stone Age Sites with Bone Points in the Upper Semliki Valley, Zaire , 2007 .

[77]  M. Ernst,et al.  Humans integrate visual and haptic information in a statistically optimal fashion , 2002, Nature.

[78]  A Garfinkel,et al.  Controlling cardiac chaos. , 1992, Science.

[79]  I. Soltesz,et al.  On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy , 2013, Nature Communications.

[80]  Yaneer Bar-Yam,et al.  From big data to important information , 2016, Complex..

[81]  Steffen Prohaska,et al.  Large-Scale Automated Histology in the Pursuit of Connectomes , 2011, The Journal of Neuroscience.

[82]  Dan Braha,et al.  Dynamical Response of Networks Under External Perturbations: Exact Results , 2007, 0705.4607.

[83]  M. London,et al.  Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex , 2010, Nature.

[84]  Functional Neurosurgery,et al.  Stereotactic and Functional Neurosurgery: Principles and Applications , 1989 .

[85]  B. Zemelman,et al.  Selective Photostimulation of Genetically ChARGed Neurons , 2002, Neuron.

[86]  Hava T. Siegelmann,et al.  A Theory of Complexity for Continuous Time Systems , 2002, J. Complex..

[87]  Kevan A. C. Martin,et al.  A Canonical Microcircuit for Neocortex , 1989, Neural Computation.

[88]  Kenneth D Miller,et al.  Canonical computations of cerebral cortex , 2016, Current Opinion in Neurobiology.

[89]  P. Gildenberg,et al.  Evolution of Neuromodulation , 2005, Stereotactic and Functional Neurosurgery.

[90]  Juliana Y. Rhee,et al.  Acute off-target effects of neural circuit manipulations , 2015, Nature.

[91]  David J. Anderson,et al.  Genetic dissection of an amygdala microcircuit that gates conditioned fear , 2010, Nature.

[92]  Goldenfeld,et al.  Simple lessons from complexity , 1999, Science.

[93]  Simon R. Schultz,et al.  Prospects for Optogenetic Augmentation of Brain Function , 2015, Front. Syst. Neurosci..

[94]  Jeff Moehlis,et al.  Locally optimal extracellular stimulation for chaotic desynchronization of neural populations , 2014, Journal of Computational Neuroscience.

[95]  F. Wolf,et al.  Dynamic Flux Tubes Form Reservoirs of Stability in Neuronal Circuits , 2012 .

[96]  Hubin Zhao,et al.  Recent Progress of Development of Optogenetic Implantable Neural Probes , 2017, International journal of molecular sciences.

[97]  Takashi D Y Kozai,et al.  Photoelectric artefact from optogenetics and imaging on microelectrodes and bioelectronics: New Challenges and Opportunities. , 2015, Journal of materials chemistry. B.

[98]  J. Slotine,et al.  Spectrum of controlling and observing complex networks , 2015, Nature Physics.

[99]  Lima,et al.  Suppression of chaos by resonant parametric perturbations. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[100]  J. H. Correia,et al.  Design and manufacturing challenges of optogenetic neural interfaces: a review , 2017, Journal of neural engineering.

[101]  Justin C. Williams,et al.  From Optogenetic Technologies to Neuromodulation Therapies , 2013, Science Translational Medicine.

[102]  M. Kringelbach,et al.  Translational principles of deep brain stimulation , 2007, Nature Reviews Neuroscience.

[103]  Gerard Casey Minds and machines , 1992 .

[104]  Nicholas J. Priebe,et al.  Mechanisms of Neuronal Computation in Mammalian Visual Cortex , 2012, Neuron.

[105]  G. E. Alexander,et al.  Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, "prefrontal" and "limbic" functions. , 1990, Progress in brain research.

[106]  Jie Sun,et al.  Controllability transition and nonlocality in network control. , 2013, Physical review letters.

[107]  Alexandre Pouget,et al.  Dynamical Constraints on Using Precise Spike Timing to Compute in Recurrent Cortical Networks , 2008, Neural Computation.

[108]  Dean V Buonomano,et al.  Embedding Multiple Trajectories in Simulated Recurrent Neural Networks in a Self-Organizing Manner , 2009, The Journal of Neuroscience.

[109]  Nicholas G Hatsopoulos,et al.  High-frequency oscillations in human and monkey neocortex during the wake–sleep cycle , 2016, Proceedings of the National Academy of Sciences.

[110]  S. Strogatz Exploring complex networks , 2001, Nature.

[111]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.