Conformational information in DNA: Its role in the interaction with DNA topoisomerase I and nucleosomes

Information in DNA is not limited to sequence information. Both local and global conformational parameters are pivotal to the interaction with a number of relevant proteins. The function of the major components of the transcription machinery (RNA polymerase II, DNA topoisomerase I, nucleosomes, the TATA‐binding factor) is dependent on the topological status of the substrate DNA molecule. The topological requirements and the conformational consensus that dictate the rules for localization of nucleosomes and define the active sites for DNA topoisomerase I have been established; the reaction of DNA topoisomerase I is regulated by a topological feedback mechanism. The integrating function of the free energy of supercoiling in the transcription process and the regulatory role of DNA topoisomerase I are discussed. © 1994 Wiley‐Liss, Inc.

[1]  A. Amadei,et al.  In vitro preferential topoisomerization of bent DNA. , 1989, Nucleic acids research.

[2]  R. Herrera,et al.  Rapid induction of c-fos transcription reveals quantitative linkage of RNA polymerase II and DNA topoisomerase I enzyme activities , 1990, Cell.

[3]  S. Hirose,et al.  DNA superhelicity affects the formation of transcription preinitiation complex on eukaryotic genes differently. , 1991, Nucleic acids research.

[4]  L. Verdone,et al.  DNA topoisomerase I controls the kinetics of promoter activation and DNA topology in Saccharomyces cerevisiae , 1993, Molecular and cellular biology.

[5]  F. Della Seta,et al.  Structure of RNA polymerase II promoters. Conformational alterations and template properties of circularized Saccharomyces cerevisiae GAL1‐GAL10 divergent promoters. , 1986, The EMBO journal.

[6]  T. Hsieh,et al.  DNA topoisomerase I is essential in Drosophila melanogaster. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Q. Ju,et al.  Topoisomerases and yeast rRNA transcription: negative supercoiling stimulates initiation and topoisomerase activity is required for elongation. , 1992, Genes & development.

[8]  A. Hinnen,et al.  Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. , 1986, The EMBO journal.

[9]  R. Negri,et al.  Multiple nucleosome positioning with unique rotational setting for the Saccharomyces cerevisiae 5S rRNA gene in vitro and in vivo. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[10]  G. Salina,et al.  Attraction, phasing and neighbour effects of histone octamers on curved DNA. , 1990, Journal of molecular biology.

[11]  W Hörz,et al.  Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/PHO3 locus in yeast. , 1986, The EMBO journal.

[12]  G. Giaever,et al.  Supercoiling of intracellular DNA can occur in eukaryotic cells , 1988, Cell.

[13]  A. Klug,et al.  The bending of DNA in nucleosomes and its wider implications. , 1987, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[14]  G. Costanzo,et al.  Linkage reduction allows reconstitution of nucleosomes on DNA microdomains. , 1989, Journal of molecular biology.

[15]  H. Richard-Foy,et al.  Sequence‐specific positioning of nucleosomes over the steroid‐inducible MMTV promoter. , 1987, The EMBO journal.

[16]  R. Sternglanz,et al.  Need for DNA topoisomerase activity as a swivel for DNA replication for transcription of ribosomal RNA , 1987, Nature.

[17]  M. Choder A general topoisomerase I-dependent transcriptional repression in the stationary phase in yeast. , 1991, Genes & development.

[18]  E. Di Mauro,et al.  Eukaryotic DNA topoisomerase I reaction is topology dependent. , 1988, Nucleic acids research.

[19]  P. Sharp,et al.  DNA topology and a minimal set of basal factors for transcription by RNA polymerase II , 1993, Cell.

[20]  J. Champoux,et al.  The basis for camptothecin enhancement of DNA breakage by eukaryotic topoisomerase I. , 1989, Nucleic acids research.

[21]  J. Wang,et al.  Supercoiling of the DNA template during transcription. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[22]  E. Di Mauro,et al.  Regulation of the function of eukaryotic DNA topoisomerase I: topological conditions for inactivity. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[23]  R. Sinden,et al.  Stably maintained microdomain of localized unrestrained supercoiling at a Drosophila heat shock gene locus. , 1993, The EMBO journal.

[24]  P. Chambon,et al.  Folding of the DNA double helix in chromatin-like structures from simian virus 40. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[25]  E. Di Mauro,et al.  DNA tridimensional context affects the reactivity of eukaryotic DNA topoisomerase I. , 1993, Journal of Molecular Biology.

[26]  M. Grunstein,et al.  Yeast histone H4 N-terminal sequence is required for promoter activation in vivo , 1991, Cell.

[27]  D. Reinberg,et al.  DNA topoisomerase I is involved in both repression and activation of transcription , 1993, Nature.

[28]  M. Beato,et al.  Structural features of a regulatory nucleosome. , 1990, Journal of molecular biology.

[29]  J. Wang,et al.  Positive supercoiling of DNA greatly diminishes mRNA synthesis in yeast. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[30]  R. Sternglanz,et al.  Transcription-dependent DNA supercoiling in yeast DNA topoisomerase mutants , 1988, Cell.

[31]  A. Amadei,et al.  The conformation of constitutive DNA interaction sites for eukaryotic DNA topoisomerase I on intrinsically curved DNAs. , 1991, Biochimica et biophysica acta.

[32]  M. Beato,et al.  Nucleosome positioning modulates accessibility of regulatory proteins to the mouse mammary tumor virus promoter , 1990, Cell.

[33]  E. M. Bradbury,et al.  Mobile nucleosomes‐‐a general behavior. , 1992, The EMBO journal.