Index-supported pattern matching on tuples of time-dependent values

Lately, the amount of mobility data recorded by GPS-enabled (and other) devices has increased drastically, entailing the necessity of efficient processing and analysis methods. In many cases, not only the geographic position, but also additional time-dependent information are traced and/or generated, according to the purpose of the evaluation. For example, in the field of animal behavior research, besides the position of the monitored animal, biologists are interested in further data like the altitude or the temperature at every measuring point. Other application domains comprise the names of streets, places of interest, or transportation modes that can be recorded along with the geographic position of a person. In this paper, we present in detail a framework for analyzing datasets with arbitrarily many time-dependent attributes. This can be considered as a major extension of our previous work, a comprehensive framework for pattern matching on symbolic trajectories with index support. For an efficient processing of different data types, a variable number of indexes of four different types that correspond to the data types of the attributes are applied. We demonstrate the expressiveness and efficiency of our approach by querying a real dataset representing taxi trips in Rome and, particularly, with a broad series of experiments using trajectories generated by BerlinMOD combined with geological raster data.

[1]  Dieter Pfoser,et al.  Novel Approaches in Query Processing for Moving Object Trajectories , 2000, VLDB 2000.

[2]  Ralf Hartmut Güting,et al.  Hybrid Queries over Symbolic and Spatial Trajectories: A Usage Scenario , 2014, 2014 IEEE 15th International Conference on Mobile Data Management.

[3]  Ralf Hartmut Güting,et al.  Symbolic Trajectories in SECONDO: Pattern Matching and Rewriting , 2013, DASFAA.

[4]  Markus Schneider,et al.  A foundation for representing and querying moving objects , 2000, TODS.

[5]  Maria Luisa Damiani,et al.  Efficient Access to Temporally Overlaying Spatial and Textual Trajectories , 2016, 2016 17th IEEE International Conference on Mobile Data Management (MDM).

[6]  D UllmanJeffrey,et al.  Introduction to automata theory, languages, and computation, 2nd edition , 2001 .

[7]  Marcos R. Vieira,et al.  Complex motion pattern queries for trajectories , 2011, 2011 IEEE 27th International Conference on Data Engineering Workshops.

[8]  Petko Bakalov,et al.  Querying trajectories using flexible patterns , 2010, EDBT '10.

[9]  Ralf Hartmut Güting,et al.  SECONDO: A Platform for Moving Objects Database Research and for Publishing and Integrating Research Implementations , 2010, IEEE Data Eng. Bull..

[10]  Rene De La Briandais File searching using variable length keys , 1959, IRE-AIEE-ACM Computer Conference.

[11]  Nikos Pelekis,et al.  Mobility Data Management and Exploration , 2014, Springer New York.

[12]  Douglas Comer,et al.  Ubiquitous B-Tree , 1979, CSUR.

[13]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[14]  Stefano Spaccapietra,et al.  Semantic trajectories modeling and analysis , 2013, CSUR.

[15]  Fabio Porto,et al.  A conceptual view on trajectories , 2008, Data Knowl. Eng..

[16]  Ralf Hartmut Güting,et al.  Moving Objects Databases (The Morgan Kaufmann Series in Data Management Systems) (The Morgan Kaufmann Series in Data Management Systems) , 2005 .

[17]  Timos K. Sellis,et al.  Spatio-temporal composition and indexing for large multimedia applications , 1998, Multimedia Systems.

[18]  Cédric du Mouza,et al.  Mobility Patterns , 2005, STDBM.

[19]  Ralf Hartmut Güting,et al.  A data model and data structures for moving objects databases , 2000, SIGMOD '00.

[20]  John Krumm,et al.  Hidden Markov map matching through noise and sparseness , 2009, GIS.

[21]  Walid G. Aref,et al.  Spatio-Temporal Access Methods: Part 2 (2003 - 2010) , 2010, IEEE Data Eng. Bull..

[22]  Marco Heurich,et al.  An event-based conceptual model for context-aware movement analysis , 2011, Int. J. Geogr. Inf. Sci..

[23]  Gonzalo Navarro,et al.  Flexible Pattern Matching in Strings: Practical On-Line Search Algorithms for Texts and Biological Sequences , 2002 .

[24]  Ralf Hartmut Güting,et al.  Spatio-Temporal Data Types: An Approach to Modeling and Querying Moving Objects in Databases , 1999, GeoInformatica.

[25]  Ralf Hartmut Güting,et al.  Index-supported pattern matching on symbolic trajectories , 2014, SIGSPATIAL/GIS.

[26]  Ralf Hartmut Güting,et al.  Symbolic trajectories and application challenges , 2015, SIGSPACIAL.

[27]  George Kollios,et al.  Complex Spatio-Temporal Pattern Queries , 2005, VLDB.

[28]  Robert B. Noland,et al.  Current map-matching algorithms for transport applications: State-of-the art and future research directions , 2007 .

[29]  Marios Hadjieleftheriou,et al.  R-Trees - A Dynamic Index Structure for Spatial Searching , 2008, ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems.

[30]  Jae-Woo Chang,et al.  TMN-tree: New Trajectory Index Structure for Moving Objects in Spatial Networks , 2010, 2010 10th IEEE International Conference on Computer and Information Technology.

[31]  Stefano Spaccapietra,et al.  Semantic trajectories: Mobility data computation and annotation , 2013, TIST.

[32]  Lidan Shou,et al.  Splitter: Mining Fine-Grained Sequential Patterns in Semantic Trajectories , 2014, Proc. VLDB Endow..

[33]  Ralf Hartmut Güting,et al.  Efficient Trajectory Analysis for Several Time-Dependent Attributes: A Case Study for Roe Deer , 2016, 2016 17th IEEE International Conference on Mobile Data Management (MDM).

[34]  Yu Zheng,et al.  Computing with Spatial Trajectories , 2011, Computing with Spatial Trajectories.

[35]  Nicholas Jing Yuan,et al.  Towards efficient search for activity trajectories , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[36]  Cédric du Mouza,et al.  Multiscale classification of moving objects trajectories , 2004, Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004..

[37]  Petko Bakalov,et al.  FlexTrack: A System for Querying Flexible Patterns in Trajectory Databases , 2011, SSTD.

[38]  Amit P. Sheth,et al.  Semantic (Web) Technology In Action: Ontology Driven Information Systems for Search, Integration and Analysis , 2003, IEEE Data Eng. Bull..

[39]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[40]  Ralf Hartmut Güting,et al.  Moving Objects Databases , 2005 .

[41]  Ralf Hartmut Güting,et al.  Symbolic Trajectories , 2015, TSAS.

[42]  Ralf Hartmut Güting,et al.  Querying Moving Objects in SECONDO , 2006, 7th International Conference on Mobile Data Management (MDM'06).

[43]  R. Bayer,et al.  Organization and maintenance of large ordered indices , 1970, SIGFIDET '70.

[44]  Lorenzo Bracciale,et al.  CRAWDAD dataset roma/taxi (v.2014-07-17) , 2014 .

[45]  Rudolf Bayer,et al.  Organization and maintenance of large ordered indexes , 1972, Acta Informatica.

[46]  Ralf Hartmut Güting,et al.  BerlinMOD: a benchmark for moving object databases , 2009, The VLDB Journal.