WO3 nanoparticle-based conformable pH sensor.

pH is a vital physiological parameter that can be used for disease diagnosis and treatment as well as in monitoring other biological processes. Metal/metal oxide based pH sensors have several advantages regarding their reliability, miniaturization, and cost-effectiveness, which are critical characteristics for in vivo applications. In this work, WO3 nanoparticles were electrodeposited on flexible substrates over metal electrodes with a sensing area of 1 mm(2). These sensors show a sensitivity of -56.7 ± 1.3 mV/pH, in a wide pH range of 9 to 5. A proof of concept is also demonstrated using a flexible reference electrode in solid electrolyte with a curved surface. A good balance between the performance parameters (sensitivity), the production costs, and simplicity of the sensors was accomplished, as required for wearable biomedical devices.

[1]  James D. Weiland,et al.  In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes , 2002, IEEE Transactions on Biomedical Engineering.

[2]  S. K. Deb,et al.  Effect of crystallinity on electrochromic mechanism of LixWO3 thin films , 2003 .

[3]  Wouter Olthuis,et al.  pH sensor properties of electrochemically grown iridium oxide , 1990 .

[4]  O. Wolfbeis,et al.  Fiber-optic chemical sensors and biosensors (2008-2012). , 2013, Analytical chemistry.

[5]  Mu Chiao,et al.  A flexible pH sensor based on the iridium oxide sensing film , 2011 .

[6]  G. Gerlach,et al.  Chemical and pH sensors based on the swelling behavior of hydrogels , 2005 .

[7]  K. Bharathi,et al.  Effect of structure and size on the electrical properties of nanocrystalline WO3 films. , 2010, ACS applied materials & interfaces.

[8]  Thomas E. Mallouk,et al.  pH-sensitive WO3-based microelectrochemical transistors , 1986 .

[9]  A. Safavi,et al.  Novel optical pH sensor for high and low pH values , 2003 .

[10]  David D. Zhou Microelectrodes for in-vivo determination of pH , 2008 .

[11]  C. Lampert,et al.  Electrochromic materials and devices for energy-efficient windows. [161 references] , 1984 .

[12]  S. A. Agnihotry,et al.  Electrodeposited tungsten oxide films: annealing effects on structure and electrochromic performance , 2004 .

[13]  Hanqing Yu,et al.  A Photometric High-Throughput Method for Identification of Electrochemically Active Bacteria Using a WO3 Nanocluster Probe , 2013, Scientific Reports.

[14]  Yongyao Xia,et al.  Large-scale synthesis of single-crystal hexagonal tungsten trioxide nanowires and electrochemical lithium intercalation into the nanocrystals , 2007 .

[15]  N. Katsarakis,et al.  Electrochemical and photocatalytic properties of WO3 coatings grown at low temperatures , 2011 .

[16]  S. A. Agnihotry,et al.  FTIR investigations of solid precursor materials for sol-gel deposition of WO3 based electrochromic films , 2000 .

[17]  Patrick J. Kinlen,et al.  A solid-state pH sensor based on a Nafion-coated iridium oxide indicator electrode and a polymer-based silver chloride reference electrode , 1994 .

[18]  N. Yamazoe,et al.  Wet process-based fabrication of WO3 thin film for NO2 detection , 2004 .

[19]  P. Kurzweil,et al.  Metal Oxides and Ion-Exchanging Surfaces as pH Sensors in Liquids: State-of-the-Art and Outlook , 2009, Sensors.

[20]  Changhyun Pang,et al.  Recent advances in flexible sensors for wearable and implantable devices , 2013 .

[21]  Pedro Barquinha,et al.  Plastic Compatible Sputtered ${\hbox{Ta}}_{2}{\hbox{O}}_{5}$ Sensitive Layer for Oxide Semiconductor TFT Sensors , 2013, Journal of Display Technology.

[22]  T. Thongtem,et al.  CTAB-assisted hydrothermal synthesis of tungsten oxide microflowers , 2011 .

[23]  Pedro Barquinha,et al.  Extended-Gate ISFETs Based on Sputtered Amorphous Oxides , 2013, Journal of Display Technology.

[24]  Haiyan Gao,et al.  Facile preparation and electrochemical properties of hierarchical chrysanthemum-like WO3·0.33H2O , 2012 .

[25]  Alvaro Antonio Alencar de Queiroz,et al.  Dendrimers/TiO2 nanoparticles layer-by-layer films as extended gate FET for pH detection , 2012 .

[26]  Carl P. Tripp,et al.  Synthesis of high surface area monoclinic WO3 particles using organic ligands and emulsion based methods , 2002 .

[27]  S. Lemos,et al.  Development of low-cost metal oxide pH electrodes based on the polymeric precursor method. , 2008, Analytica chimica acta.

[28]  E. Marzbanrad,et al.  WO3-based NO2 sensors fabricated through low frequency AC electrophoretic deposition , 2010 .

[29]  Jinmin Wang,et al.  Synthesis, Assembly, and Electrochromic Properties of Uniform Crystalline WO3 Nanorods , 2008 .

[30]  Muhammad Riaz,et al.  Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods , 2009, Sensors.

[31]  R. W. Fessenden,et al.  Electrochromic and photoelectrochromic behavior of thin WO[sub 3] films prepared from quantum size colloidal particles , 1994 .

[32]  Hossam Haick,et al.  Flexible sensors based on nanoparticles. , 2013, ACS nano.

[33]  Ming Hu,et al.  NO2-sensing properties of porous WO3 gas sensor based on anodized sputtered tungsten thin film , 2012 .

[34]  E. Pretsch,et al.  Modern potentiometry. , 2007, Angewandte Chemie.

[35]  Wenzhao Jia,et al.  Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. , 2013, The Analyst.