Thermal Properties of the Hybrid Graphene-Metal Nano-Micro-Composites: Applications in Thermal Interface Materials

The authors report on synthesis and thermal properties of the electrically-conductive thermal interface materials with the hybrid graphene-metal particle fillers. The thermal conductivity of resulting composites was increased by ~500% in a temperature range from 300 K to 400 K at a small graphene loading fraction of 5-vol.-%. The unusually strong enhancement of thermal properties was attributed to the high intrinsic thermal conductivity of graphene, strong graphene coupling to matrix materials and the large range of the length-scale - from nanometers to micrometers - of the graphene and silver particle fillers. The obtained results are important for thermal management of advanced electronics and optoelectronics.

[1]  A. Balandin,et al.  Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. , 2012, Nano letters.

[2]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[3]  D. Papavassiliou,et al.  Simulation insights into thermally conductive graphene-based nanocomposites , 2011 .

[4]  A. Balandin,et al.  Thermal Conduction in Suspended Graphene Layers , 2010 .

[5]  Ruzhu Wang,et al.  Preparation and thermal characterization of expanded graphite/paraffin composite phase change material , 2010 .

[6]  A. Balandin,et al.  Reduced thermal resistance of the silicon-synthetic diamond composite substrates at elevated temperatures , 2010 .

[7]  J. Coleman,et al.  High-concentration, surfactant-stabilized graphene dispersions. , 2010, ACS nano.

[8]  Samia Subrina,et al.  Dimensional crossover of thermal transport in few-layer graphene. , 2010, Nature materials.

[9]  W. Jones,et al.  Electrically and Thermally Conducting Nanocomposites for Electronic Applications , 2010, Materials.

[10]  D. Teweldebrhan,et al.  Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia , 2009 .

[11]  N. Koratkar,et al.  Enhanced mechanical properties of nanocomposites at low graphene content. , 2009, ACS nano.

[12]  A. Balandin,et al.  Chill Out , 2009, IEEE Spectrum.

[13]  A. Green,et al.  Solution phase production of graphene with controlled thickness via density differentiation. , 2009, Nano letters.

[14]  Alexander A. Balandin,et al.  Heat conduction in graphene: experimental study and theoretical interpretation , 2009 .

[15]  Alexander A. Balandin,et al.  Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering , 2009 .

[16]  A. A. Balandin,et al.  Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite , 2009, 0904.0607.

[17]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[18]  Jie Wei,et al.  Challenges in Cooling Design of CPU Packages for High-Performance Servers , 2008 .

[19]  Yi He,et al.  Rapid thermal conductivity measurement with a hot disk sensor: Part 1. Theoretical considerations , 2005 .

[20]  Yi He,et al.  Rapid thermal conductivity measurement with a hot disk sensor: Part 2. Characterization of thermal greases , 2005 .

[21]  S. Gurrum,et al.  Thermal issues in next-generation integrated circuits , 2004, IEEE Transactions on Device and Materials Reliability.

[22]  R. L. Webb,et al.  Performance and testing of thermal interface materials , 2003, Microelectron. J..

[23]  S. Gustafsson Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials , 1991 .

[24]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[25]  L. Napolitano Materials , 1984, Science.

[26]  P. Conway,et al.  Thermal Interface Materials - A Review of the State of the Art , 2006, 2006 1st Electronic Systemintegration Technology Conference.

[27]  IEEE Spectrum , 2022 .