Anisotropic Sobolev Spaces with Weights

We study Sobolev spaces with weights in the half-space R + = {(x, y) : x ∈ R N , y > 0}, adapted to the singular elliptic operators L = y∆x + y α2 ( Dyy + c y Dy − b y )

[1]  G. Metafune,et al.  Gradient Estimates for Elliptic Operators with Second-Order Discontinuous Coefficients , 2019, Mediterranean Journal of Mathematics.

[2]  G. Metafune,et al.  Maximal regularity for elliptic operators with second-order discontinuous coefficients , 2020, Journal of Evolution Equations.

[3]  G. Metafune,et al.  Sharp kernel estimates for elliptic operators with second-order discontinuous coefficients , 2017 .

[4]  G. Metafune,et al.  Kernel estimates for elliptic operators with second-order discontinuous coefficients , 2016, Journal of Evolution Equations.

[5]  G. Metafune,et al.  Weighted Calderón–Zygmund and Rellich inequalities in $$L^p$$Lp , 2013, 1309.1302.

[6]  L. Negro,et al.  Asymptotic behaviour for elliptic operators with second-order discontinuous coefficients , 2019 .

[7]  G. Metafune,et al.  Lp estimates for Baouendi–Grushin operators , 2020 .

[8]  P. Grisvard Espaces intermédiaires entre espaces de Sobolev avec poids , 1963 .

[9]  Chiara Spina,et al.  Degenerate operators on the half-line , 2022 .

[10]  Chiara Spina,et al.  Lp estimates for the Caffarelli-Silvestre extension operators , 2021 .

[11]  G. Metafune,et al.  Rellich inequalities in bounded domains , 2019, Mathematische Annalen.

[12]  Scuola Normale Superiore,et al.  Annali della Scuola normale superiore di Pisa, Classe di scienze , 1974 .

[13]  Chiara Spina,et al.  A unified approach to degenerate problems in the half-space , 2022, Journal of Differential Equations.

[14]  C. Simader,et al.  Direct methods in the theory of elliptic equations , 2012 .