The design of on-line linear least-squares estimators given covariance specifications via an imbedding method

The method of invariant imbedding is employed to develop on-line algorithms for all types of linear least-squares estimators (filter; fixed-point, fixed-lag, and fixed-interval smoothers; fixed-point, fixed-lead, and fixed-interval predictors) using covariance specifications for nonstationary stochastic signals in the presence of white Gaussian plus colored noise. Two design procedures are given. One is based on the initial-value solution of the function I"y(t) which is the solution to a Fredholm integral equation of the second kind, and the other on that of the function h(t,s) which is the impulse response function obeyed by a generalized Wiener-Hopf integral equation.

[1]  Masanori Sugisaka Some initial-value methods for sequential estimation problems via invariant imbedding , 1977 .

[2]  T. Kailath,et al.  An innovations approach to least squares estimation--Part IV: Recursive estimation given lumped covariance functions , 1971 .

[3]  Brian D. O. Anderson,et al.  Some Integral Equations with Nonsymmetric Separable Kernels , 1971 .

[4]  Seiichi Nakamori,et al.  Initial-value system for linear smoothing problems by covariance information , 1977, Autom..

[5]  Arthur B. Baggeroer State Variables and Communication Theory , 1970 .

[6]  Thomas Kailath,et al.  Fredholm resolvents, Wiener-Hopf equations, and Riccati differential equations , 1969, IEEE Trans. Inf. Theory.

[7]  John L. Casti,et al.  A new initial-value method for on-line filtering and estimation (Corresp.) , 1972, IEEE Trans. Inf. Theory.

[8]  John L. Casti,et al.  Imbedding methods in applied mathematics , 1973 .

[9]  Robert E. Kalaba,et al.  Integral equations via imbedding methods , 1974 .

[10]  Thomas Kailath,et al.  A view of three decades of linear filtering theory , 1974, IEEE Trans. Inf. Theory.

[11]  L. Brandenburg,et al.  Shaping filter representation of nonstationary colored noise , 1971, IEEE Trans. Inf. Theory.

[12]  Thomas Kailath Lectures on linear least-squares estimation , 1976 .

[13]  M. Morf,et al.  Fast time-invariant implementations of Gaussian signal detectors , 1978, IEEE Trans. Inf. Theory.

[14]  Robert E. Kalaba,et al.  Multiple scattering processes: Inverse and direct , 1975 .

[15]  A. L. Nagel,et al.  Controller design based on a limit criterion , 1976, Autom..

[16]  E Tse,et al.  Optimal linear filtering theory and radiative transfer: Comparisons and interconnections , 1972 .

[17]  T. Kailath,et al.  An innovations approach to least-squares estimation--Part V: Innovations representations and recursive estimation in colored noise , 1973 .

[18]  Thomas Kailath,et al.  Some new algorithms for recursive estimation in constant linear systems , 1973, IEEE Trans. Inf. Theory.