Remote Sensing of Grassland Biophysical Parameters in the Context of the Sentinel-2 Satellite Mission

This study investigates the potential of the Sentinel-2 satellite for monitoring the seasonal changes in grassland total canopy chlorophyll content (CCC), fraction of photosynthetically active radiation absorbed by the vegetation canopy (FAPAR), and fraction of photosynthetically active radiation absorbed only by its photosynthesizing components (GFAPAR). Reflectance observations were collected on a continuous basis during growing seasons by means of a newly developed ASD-WhiteRef system. Two models using Sentinel-2 simulated data (linear regression-vegetation indices (VIs) approach and multiple regression (MR) reflectance approach) were tested to estimate vegetation biophysical parameters. To assess whether the use of full solar spectrum reflectance data is able to provide an added value in CCC and GFAPAR estimation accuracy, a third model based on partial least squares regression (PLSR) and the ASD-WhiteRef reflectance data was tested. The results showed that FAPAR remained quite stable during the reproduction and senescence stages, and no significant relationships between FAPAR and VIs were found. On the other hand, GFAPAR showed clearer seasonal trends. The comparison of the three models revealed no significant differences in the accuracies of CCC and GFAPAR predictions and demonstrated a strong contribution of SWIR bands to the explained variability of investigated parameters. The promising results highlight the potential of the Sentinel-2 satellite for retrieving biophysical parameters from space.

[1]  A. Gitelson,et al.  Remote estimation of crop gross primary production with Landsat data , 2012 .

[2]  R. Fensholt,et al.  An automated field spectrometer system for studying VIS, NIR and SWIR anisotropy for semi-arid savanna , 2014 .

[3]  Clement Atzberger,et al.  Evaluation of Sentinel-2 Spectral Sampling for Radiative Transfer Model Based LAI Estimation of Wheat, Sugar Beet, and Maize , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[4]  R. O’Brien,et al.  A Caution Regarding Rules of Thumb for Variance Inflation Factors , 2007 .

[5]  Clement Atzberger,et al.  Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat , 2010 .

[6]  Xiaoyu Song,et al.  Exploring the Best Hyperspectral Features for LAI Estimation Using Partial Least Squares Regression , 2014, Remote. Sens..

[7]  C. D. Di Bella,et al.  Uncertainties in fPAR estimation of grass canopies under different stress situations and differences in architecture , 2010 .

[8]  H. S. Pandalai,et al.  Noise-signal index threshold: a new noise-reduction technique for generation of reference spectra and efficient hyperspectral image classification , 2010 .

[9]  Jan G. P. W. Clevers,et al.  Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods - A comparison , 2015 .

[10]  Bruno Andrieu,et al.  Candidate high spectral resolution infrared indices for crop cover , 1993 .

[11]  A. Gitelson Wide Dynamic Range Vegetation Index for remote quantification of biophysical characteristics of vegetation. , 2004, Journal of plant physiology.

[12]  A. Viña,et al.  New developments in the remote estimation of the fraction of absorbed photosynthetically active radiation in crops , 2005 .

[13]  J. Dash,et al.  The MERIS terrestrial chlorophyll index , 2004 .

[14]  Damiano Gianelle,et al.  WhiteRef: A New Tower-Based Hyperspectral System for Continuous Reflectance Measurements , 2015, Sensors.

[15]  S. Wofsy,et al.  Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data , 2004 .

[16]  Andrew K. Skidmore,et al.  Potential of Sentinel-2 spectral configuration to assess rangeland quality , 2015 .

[17]  Jadunandan Dash,et al.  The potential of the MERIS Terrestrial Chlorophyll Index for carbon flux estimation , 2010 .

[18]  Damiano Gianelle,et al.  Monitoring of carbon dioxide fluxes in a subalpine grassland ecosystem of the Italian Alps using a multispectral sensor , 2014 .

[19]  J. Clevers,et al.  Assessment of the biomass and nitrogen status of natural grasslands using hyperspectral remote sensing , 2010 .

[20]  N. Broge,et al.  Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data , 2002 .

[21]  Yafit Cohen,et al.  SWIR-based spectral indices for assessing nitrogen content in potato fields , 2010 .

[22]  Heiko Balzter,et al.  Evaluating Sentinel-2 for Lakeshore Habitat Mapping Based on Airborne Hyperspectral Data , 2015, Sensors.

[23]  John A. Gamon,et al.  A mobile tram system for systematic sampling of ecosystem optical properties , 2006 .

[24]  B. Gao NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space , 1996 .

[25]  L. Vescovo,et al.  Determination of green herbage ratio in grasslands using spectral reflectance. Methods and ground measurements , 2007 .

[26]  E. Nikinmaa,et al.  A temperature-controlled spectrometer system for continuous and unattended measurements of canopy spectral radiance and reflectance , 2014 .

[27]  R.E.E. Jongschaap,et al.  Imaging spectrometry for agricultural applications , 2002 .

[28]  Clement Atzberger,et al.  LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements , 2008 .

[29]  Ron Wehrens,et al.  The pls Package: Principal Component and Partial Least Squares Regression in R , 2007 .

[30]  C. Jun,et al.  Performance of some variable selection methods when multicollinearity is present , 2005 .

[31]  Gary R. Watmough,et al.  Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation , 2013 .

[32]  A. Viña,et al.  Green leaf area index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity , 2012 .

[33]  J. Monteith Climate and the efficiency of crop production in Britain , 1977 .

[34]  Michele Meroni,et al.  Ground-Based Optical Measurements at European Flux Sites: A Review of Methods, Instruments and Current Controversies , 2011, Sensors.

[35]  Clayton C. Kingdon,et al.  Remotely estimating photosynthetic capacity, and its response to temperature, in vegetation canopies using imaging spectroscopy , 2015 .

[36]  Andrew E. Suyker,et al.  Synoptic Monitoring of Gross Primary Productivity of Maize Using Landsat Data , 2008, IEEE Geoscience and Remote Sensing Letters.

[37]  Anatoly A. Gitelson,et al.  Algorithms for estimating green leaf area index in C3 and C4 crops for MODIS, Landsat TM/ETM+, MERIS, Sentinel MSI/OLCI, and Venµs sensors , 2015 .

[38]  J. Monteith SOLAR RADIATION AND PRODUCTIVITY IN TROPICAL ECOSYSTEMS , 1972 .

[39]  A. Huete,et al.  Optical-Biophysical Relationships of Vegetation Spectra without Background Contamination , 2000 .

[40]  Michele Meroni,et al.  Remote sensing-based estimation of gross primary production in a subalpine grassland , 2012 .

[41]  A. Gitelson,et al.  Use of a green channel in remote sensing of global vegetation from EOS- MODIS , 1996 .

[42]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[43]  D. Gianelle,et al.  Using the MIR bands in vegetation indices for the estimation of grassland biophysical parameters from satellite remote sensing in the Alps region of Trentino (Italy) , 2008 .

[44]  Luis Alonso,et al.  Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content , 2011, Sensors.

[45]  Liu Xianming,et al.  A Time Petri Net Extended with Price Information , 2007 .

[46]  J. Everitt,et al.  Estimating grassland phytomass production with near-infrared and mid-infrared spectral variables , 1989 .

[47]  Alessandro Cescatti,et al.  Experimental analysis of flux footprint for varying stability conditions in an alpine meadow , 2005 .

[48]  Damiano Gianelle,et al.  SpecNet revisited: bridging flux and remote sensing communities , 2010 .

[49]  A. Gitelson,et al.  Quantitative estimation of chlorophyll-a using reflectance spectra : experiments with autumn chestnut and maple leaves , 1994 .

[50]  Anatoly A. Gitelson,et al.  Remote estimation of gross primary productivity in soybean and maize based on total crop chlorophyll content , 2012 .

[51]  Yuri A. Gritz,et al.  Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. , 2003, Journal of plant physiology.

[52]  Jan G. P. W. Clevers,et al.  Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3 , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[53]  A. Gitelson,et al.  The need for a common basis for defining light-use efficiency: Implications for productivity estimation , 2015 .

[54]  Javier Pacheco-Labrador,et al.  EUROSPEC: at the interface between remote-sensing and ecosystem CO2 flux measurements in Europe , 2015 .

[55]  A. Viña,et al.  Comparison of different vegetation indices for the remote assessment of green leaf area index of crops , 2011 .

[56]  Wenjiang Huang,et al.  Remote estimation of gross primary production in wheat using chlorophyll-related vegetation indices , 2009 .

[57]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[58]  Damiano Gianelle,et al.  Climatic controls and ecosystem responses drive the inter-annual variability of the net ecosystem exchange of an alpine meadow , 2011 .

[59]  M. Rautiainen,et al.  The potential of Sentinel-2 data for estimating biophysical variables in a boreal forest: a simulation study , 2016 .

[60]  J. Schjoerring,et al.  Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression , 2003 .

[61]  Jonas Ardö,et al.  Deriving seasonal dynamics in ecosystem properties of semi-arid savanna grasslands from in situ-based hyperspectral reflectance , 2015 .

[62]  K. Itten,et al.  Hyperspectral remote sensing for estimating aboveground biomass and for exploring species richness patterns of grassland habitats , 2011 .

[63]  A. Viña,et al.  Remote estimation of canopy chlorophyll content in crops , 2005 .

[64]  Robert L. Mason,et al.  Variable Selection Techniques , 2003 .

[65]  Andrew E. Suyker,et al.  REMOTE ESTIMATION OF GROSS PRIMARY PRODUCTION IN MAIZE , 2011 .

[66]  A. Skidmore,et al.  Narrow band vegetation indices overcome the saturation problem in biomass estimation , 2004 .

[67]  F. Baret,et al.  Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model , 2005 .

[68]  Bjørn-Helge Mevik,et al.  Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR) , 2004 .

[69]  Damiano Gianelle,et al.  Ecosystem carbon fluxes and canopy spectral reflectance of a mountain meadow , 2009 .

[70]  H. Lichtenthaler,et al.  Chlorophylls and Carotenoids: Measurement and Characterization by UV‐VIS Spectroscopy , 2001 .

[71]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[72]  F. Gao,et al.  Estimation of Crop Gross Primary Production (GPP): Fapar(sub Chl) Versus MOD15A2 FPAR , 2014 .

[73]  M. Rossini,et al.  The hyperspectral irradiometer, a new instrument for long-term and unattended field spectroscopy measurements. , 2011, The Review of scientific instruments.

[74]  M. Rossini,et al.  High resolution field spectroscopy measurements for estimating gross ecosystem production in a rice field , 2010 .

[75]  Bingfang Wu,et al.  Evaluation of Chlorophyll-Related Vegetation Indices Using Simulated Sentinel-2 Data for Estimation of Crop Fraction of Absorbed Photosynthetically Active Radiation , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[76]  Javier Pacheco-Labrador,et al.  Characterization of a Field Spectroradiometer for Unattended Vegetation Monitoring. Key Sensor Models and Impacts on Reflectance , 2015, Sensors.