Transition in circular Couette flow

Two distinct kinds of transition have been identified in Couette flow between concentric rotating cylinders. The first, which will be called transition by spectral evolution, is characteristic of the motion when the inner cylinder has a larger angular velocity than the outer one. As the speed increases, a succession of secondary modes is excited; the first is the Taylor motion (periodic in the axial direction), and the second is a pattern of travelling waves (periodic in the circumferential direction). Higher modes correspond to harmonics of the two fundamental frequencies of the doubly-periodic flow. This kind of transition may be viewed as a cascade process in which energy is transferred by non-linear interactions through a discrete spectrum to progressively higher frequencies in a two-dimensional wave-number space. At sufficiently large Reynolds numbers the discrete spectrum changes gradually and reversibly to a continuous one by broadening of the initially sharp spectral lines.