On the approximation of smooth functions using generalized digital nets
暂无分享,去创建一个
[1] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[2] Josef Dick,et al. Equidistribution Properties of Generalized Nets and Sequences , 2009 .
[3] H. Woxniakowski. Information-Based Complexity , 1988 .
[4] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[5] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[6] H. E. Chrestenson. A class of generalized Walsh functions , 1955 .
[7] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[8] Harald Niederreiter,et al. Monte Carlo and quasi-Monte Carlo methods 2004 , 2006 .
[9] Xiaoqun Wang,et al. Strong tractability of multivariate integration using quasi-Monte Carlo algorithms , 2003, Math. Comput..
[10] Josef Dick,et al. Explicit Constructions of Quasi-Monte Carlo Rules for the Numerical Integration of High-Dimensional Periodic Functions , 2007, SIAM J. Numer. Anal..
[11] Henryk Wozniakowski,et al. Lattice rule algorithms for multivariate approximation in the average case setting , 2008, J. Complex..
[12] Peter Kritzer,et al. Duality theory and propagation rules for generalized digital nets , 2010, Math. Comput..
[13] Henryk Wozniakowski,et al. Information-based complexity , 1987, Nature.
[14] Harald Niederreiter,et al. Monte Carlo and Quasi-Monte Carlo Methods 2006 , 2007 .
[15] F. J. Hickernell,et al. Spline Methods Using Low Discrepancy Designs , 2008 .
[16] I. Sloan,et al. Lattice Rules for Multivariate Approximation in the Worst Case Setting , 2006 .
[17] Josef Dick,et al. QMC Rules of Arbitrary High Order: Reproducing Kernel Hilbert Space Approach , 2009 .
[18] Henryk Wozniakowski,et al. Multivariate L∞ approximation in the worst case setting over reproducing kernel Hilbert spaces , 2008, J. Approx. Theory.
[19] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[20] E. Novak,et al. Tractability of Multivariate Problems , 2008 .
[21] F. J. Hickernell,et al. Trigonometric spectral collocation methods on lattices , 2003 .
[22] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[23] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[24] J. Walsh. A Closed Set of Normal Orthogonal Functions , 1923 .
[25] Henryk Wozniakowski,et al. On the power of standard information for multivariate approximation in the worst case setting , 2009, J. Approx. Theory.
[26] Gerhard Larcher,et al. On the numerical integration of Walsh series by number-theoretic methods , 1994 .
[27] J. Dick,et al. Approximation of Functions Using Digital Nets , 2008 .
[28] Harald Niederreiter,et al. Nets, (t, s)-Sequences, and Codes , 2008 .
[29] Josef Dick,et al. Walsh Spaces Containing Smooth Functions and Quasi-Monte Carlo Rules of Arbitrary High Order , 2008, SIAM J. Numer. Anal..
[30] Henryk Wozniakowski,et al. On the Power of Standard Information for Weighted Approximation , 2001, Found. Comput. Math..
[31] Gottlieb Pirsic,et al. A Software Implementation of Niederreiter-Xing Sequences , 2002 .
[32] H. Niederreiter,et al. Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .
[33] Fred J. Hickernell,et al. Monte Carlo and Quasi-Monte Carlo Methods 2000 , 2002 .
[34] Fred J. Hickernell,et al. Error Analysis of Splines for Periodic Problems Using Lattice Designs , 2006 .
[35] Henryk Wozniakowski,et al. Tractability of Approximation for Weighted Korobov Spaces on Classical and Quantum Computers , 2004, Found. Comput. Math..
[36] Fred J. Hickernell,et al. A multivariate fast discrete Walsh transform with an application to function interpolation , 2008, Math. Comput..
[37] Harald Niederreiter,et al. Constructions of (t, m, s)-nets and (t, s)-sequences , 2005, Finite Fields Their Appl..
[38] Henryk Wozniakowski,et al. Weighted Tensor Product Algorithms for Linear Multivariate Problems , 1999, J. Complex..
[39] Josef Dick,et al. Strong tractability of multivariate integration of arbitrary high order using digitally shifted polynomial lattice rules , 2007, J. Complex..
[40] Josef Dick,et al. Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces , 2005, J. Complex..
[41] J. Dick. THE DECAY OF THE WALSH COEFFICIENTS OF SMOOTH FUNCTIONS , 2009, Bulletin of the Australian Mathematical Society.
[42] Fred J. Hickernell,et al. The existence of good extensible rank-1 lattices , 2003, J. Complex..