The second homology groups of mapping class groups of orientable surfaces
暂无分享,去创建一个
[1] R. Donagi,et al. Surface bundles: some interesting examples , 2001 .
[2] A. Stipsicz,et al. Commutators, Lefschetz fibrations and the signatures of surface bundles ☆ , 2001, math/0103176.
[3] M. Korkmaz,et al. Noncomplex smooth 4-manifolds with Lefschetz fibrations , 2001, math/0103135.
[4] B. Wajnryb. An elementary approach to the mapping class group of a surface , 1999, math/9912248.
[5] S. Morita. Structure of the mapping class groups of surfaces: a survey and a prospect , 1999, math/9911258.
[6] Wolfgang Pitsch. Un calcul élémentaire de H2(Mg,1Z) pour g≥4 , 1999 .
[7] M. Korkmaz,et al. Minimal number of singular fibers in a Lefschetz fibration , 1998, math/9812051.
[8] F. Cohen. On the Mapping Class Groups for Punctured Spheres, the Hyperelliptic Mapping Class Groups, SO(3), and Spin c (3) , 1993 .
[9] Leonard Evens,et al. Cohomology of groups , 1991, Oxford mathematical monographs.
[10] D. Benson,et al. Mapping Class Groups of Low Genus and Their Cohomology , 1991 .
[11] J. Harer. The third homology group of the moduli space of curves , 1991 .
[12] John Harer,et al. Stability of the homology of the mapping class groups of orientable surfaces , 1985 .
[13] J. Harer. The second homology group of the mapping class group of an orientable surface , 1983 .
[14] W. Meyer. Die Signatur von Flächenbündeln , 1973 .
[15] John Harer,et al. The cohomology of the moduli space of curves , 1988 .
[16] D. L. Johnson. Homeomorphisms of a surface which act trivially on homology , 1979 .