ABC-Miner+: constructing Markov blanket classifiers with ant colony algorithms

ABC-Miner is a Bayesian classification algorithm based on the Ant colony optimization (ACO) meta-heuristic. The algorithm learns Bayesian network Augmented Naïve-Bayes (BAN) classifiers, where the class node is the parent of all the nodes representing the input variables. However, this assumes the existence of a dependency relationship between the class variable and all the input variables, and this relationship is always a type of “causal” (rather than “effect”) relationship, which restricts the flexibility of the algorithm to learn. In this paper, we extended the ABC-Miner algorithm to be able to learn the Markov blanket of the class variable. Such a produced model has a more flexible Bayesian network classifier structure, where it is not necessary to have a (direct) dependency relationship between the class variable and each of the input variables, and the dependency between the class and the input variables varies from “causal” to “effect” relationships. In this context, we propose two algorithms: $${\hbox {ABC-Miner}+_1}$$ABC-Miner+1, in which the dependency relationships between the class and the input variables are defined in a separate phase before the dependency relationships among the input variables are defined, and $${\hbox {ABC-Miner}+_2}$$ABC-Miner+2, in which the two types of dependency relationships in the Markov blanket classifier are discovered in a single integrated process. Empirical evaluations on 33 UCI benchmark datasets show that our extended algorithms outperform the original version in terms of predictive accuracy, model size and computational time. Moreover, they have shown a very competitive performance against other well-known classification algorithms in the literature.

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  David Heckerman,et al.  A Tutorial on Learning with Bayesian Networks , 1998, Learning in Graphical Models.

[3]  Eugene Santos,et al.  Case-Based Bayesian Network Classifiers , 2004, FLAIRS.

[4]  Fei Zheng,et al.  Semi-naive Bayesian Classification , 2008 .

[5]  Alex Alves Freitas,et al.  ACO-Based Bayesian Network Ensembles for the Hierarchical Classification of Ageing-Related Proteins , 2013, EvoBIO.

[6]  Gregory F. Cooper,et al.  A Bayesian method for the induction of probabilistic networks from data , 1992, Machine Learning.

[7]  Boaz Lerner,et al.  Bayesian Class-Matched Multinet Classifier , 2006, SSPR/SPR.

[8]  Alex A. Freitas,et al.  A survey of hierarchical classification across different application domains , 2010, Data Mining and Knowledge Discovery.

[9]  Xuesong Yan,et al.  Survey of Improving Naive Bayes for Classification , 2007, ADMA.

[10]  Michael I. Jordan,et al.  Learning with Mixtures of Trees , 2001, J. Mach. Learn. Res..

[11]  R. DeMori,et al.  Handbook of pattern recognition and image processing , 1986 .

[12]  Mohak Shah,et al.  Evaluating Learning Algorithms: Contents , 2011 .

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Qiang Shen,et al.  Learning Bayesian networks: approaches and issues , 2011, The Knowledge Engineering Review.

[15]  Alex Alves Freitas,et al.  Data mining with an ant colony optimization algorithm , 2002, IEEE Trans. Evol. Comput..

[16]  Qiang Shen,et al.  Learning Bayesian Network Equivalence Classes with Ant Colony Optimization , 2009, J. Artif. Intell. Res..

[17]  Kevin B. Korb,et al.  Bayesian Artificial Intelligence , 2004, Computer science and data analysis series.

[18]  Monique Snoeck,et al.  Classification With Ant Colony Optimization , 2007, IEEE Transactions on Evolutionary Computation.

[19]  Pat Langley,et al.  Induction of Selective Bayesian Classifiers , 1994, UAI.

[20]  Bart Baesens,et al.  Performance of classification models from a user perspective , 2011, Decis. Support Syst..

[21]  Eugene Santos,et al.  Comparing Case-Based Bayesian Network and Recursive Bayesian Multi-Net Classifiers , 2004, IC-AI.

[22]  Alex Alves Freitas,et al.  Multiple pheromone types and other extensions to the Ant-Miner classification rule discovery algorithm , 2011, Swarm Intelligence.

[23]  Alex Alves Freitas,et al.  Comprehensible classification models: a position paper , 2014, SKDD.

[24]  Mohak Shah,et al.  Evaluating Learning Algorithms: A Classification Perspective , 2011 .

[25]  Geoffrey I. Webb,et al.  Subsumption resolution: an efficient and effective technique for semi-naive Bayesian learning , 2012, Machine Learning.

[26]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[27]  Russell Greiner,et al.  Learning Bayesian Belief Network Classifiers: Algorithms and System , 2001, Canadian Conference on AI.

[28]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[29]  David Maxwell Chickering,et al.  Large-Sample Learning of Bayesian Networks is NP-Hard , 2002, J. Mach. Learn. Res..

[30]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[31]  Daniel T. Larose,et al.  Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .

[32]  Nir Friedman,et al.  Learning Bayesian Networks with Local Structure , 1996, UAI.

[33]  Jose Miguel Puerta,et al.  Ant colony optimization for learning Bayesian networks , 2002, Int. J. Approx. Reason..

[34]  Alex Alves Freitas,et al.  Clustering-based Bayesian Multi-net Classifier construction with Ant Colony Optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[35]  Alex Alves Freitas,et al.  A new version of the ant-miner algorithm discovering unordered rule sets , 2006, GECCO '06.

[36]  Hiroshi Motoda,et al.  Feature Extraction, Construction and Selection , 1998 .

[37]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[38]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[39]  Alex Alves Freitas,et al.  ABC-Miner: An Ant-Based Bayesian Classification Algorithm , 2012, ANTS.

[40]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[41]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[42]  Thomas A. Runkler,et al.  Using a Local Discovery Ant Algorithm for Bayesian Network Structure Learning , 2009, IEEE Transactions on Evolutionary Computation.

[43]  Kuo-Chu Chang,et al.  Comparison of score metrics for Bayesian network learning , 2002, IEEE Trans. Syst. Man Cybern. Part A.

[44]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[45]  Alex Alves Freitas,et al.  Learning Bayesian network classifiers using ant colony optimization , 2013, Swarm Intelligence.

[46]  Wray L. Buntine Theory Refinement on Bayesian Networks , 1991, UAI.

[47]  Pat Langley,et al.  Induction of Recursive Bayesian Classifiers , 1993, ECML.

[48]  John A. W. McCall,et al.  Two novel Ant Colony Optimization approaches for Bayesian network structure learning , 2010, IEEE Congress on Evolutionary Computation.

[49]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[50]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[51]  Hiroshi Motoda,et al.  Feature Extraction, Construction and Selection: A Data Mining Perspective , 1998 .

[52]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[53]  King-Sun Fu,et al.  Handbook of pattern recognition and image processing , 1986 .

[54]  Kaizhu Huang,et al.  Discriminative training of Bayesian Chow-Liu multinet classifiers , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[55]  Tom M. Mitchell,et al.  The Need for Biases in Learning Generalizations , 2007 .

[56]  Alex Alves Freitas,et al.  Handling continuous attributes in Ant Colony Classification algorithms , 2009, 2009 IEEE Symposium on Computational Intelligence and Data Mining.

[57]  Alex Alves Freitas,et al.  On the Importance of Comprehensible Classification Models for Protein Function Prediction , 2010, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[58]  S. García,et al.  An Extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for all Pairwise Comparisons , 2008 .

[59]  Thomas Stützle,et al.  The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances , 2003 .

[60]  Alex Alves Freitas,et al.  Utilizing multiple pheromones in an ant-based algorithm for continuous-attribute classification rule discovery , 2013, Appl. Soft Comput..

[61]  Alex Alves Freitas,et al.  Extending the ABC-Miner Bayesian Classification Algorithm , 2013, NICSO.