Recycling Circuit Simulation Techniques for Mass-Action Biochemical Kinetics

Many numerical techniques developed for analyzing circuits can be “recycled”—that is, they can be used to analyze mass-action kinetics (MAK) models of biological processes. But the recycling must be judicious, as the differences in behavior between typical circuits and typical MAK models can impact a numerical technique’s accuracy and efficiency. In this chapter, we compare circuits and MAK models from this numerical perspective, using illustrative examples, theoretical comparisons of properties such as conservation and invariance of the non-negative orthant, as well as computational results from biological system models.

[1]  D. Koshland,et al.  An amplified sensitivity arising from covalent modification in biological systems. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Edda Klipp,et al.  Systems Biology , 1994 .

[3]  Jaijeet Roychowdhury,et al.  Efficient Multiscale Simulations of Circadian Rhythms Using Automated Phase Macomodelling Techniques , 2007, Pacific Symposium on Biocomputing.

[4]  Alberto L. Sangiovanni-Vincentelli,et al.  Steady-state methods for simulating analog and microwave circuits , 1990, The Kluwer international series in engineering and computer science.

[5]  Alper Demir,et al.  Floquet theory and non‐linear perturbation analysis for oscillators with differential‐algebraic equations , 2000 .

[6]  L. Trajkovic,et al.  Passivity and no-gain properties establish global convergence of a homotopy method for DC operating points , 1990, IEEE International Symposium on Circuits and Systems.

[7]  W. Deen Analysis Of Transport Phenomena , 1998 .

[8]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[9]  Jr. J. Wyatt Monotone sensitivity of nonlinear uniform RC transmission lines, with application to timing analysis of digital MOS integrated circuits , 1985 .

[10]  Rudiyanto Gunawan,et al.  Sensitivity Measures for Oscillating Systems: Application to Mammalian Circadian Gene Network , 2008, IEEE Transactions on Automatic Control.

[11]  T. Aprille,et al.  A computer algorithm to determine the steady-state response of nonlinear oscillators , 1972 .

[12]  J. Wyatt,et al.  Network representation of reaction--diffusion systems far from equilibrium. , 1978, Computer programs in biomedicine.

[13]  Leon O. Chua,et al.  Linear and nonlinear circuits , 1987 .

[14]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[15]  A Kremling,et al.  Systems biology--an engineering perspective. , 2007, Journal of biotechnology.

[16]  Francis J. Doyle,et al.  Sensitivity analysis of oscillatory (bio)chemical systems , 2005, Comput. Chem. Eng..

[17]  Michael J Rust,et al.  References and Notes Supporting Online Material Materials and Methods Figs. S1 to S8 Tables S1 to S3 References Ordered Phosphorylation Governs Oscillation of a Three-protein Circadian Clock , 2022 .

[18]  Drew Endy,et al.  Stimulus Design for Model Selection and Validation in Cell Signaling , 2008, PLoS Comput. Biol..

[19]  Pavan Kumar Hanumolu,et al.  Sensitivity analysis for oscillators , 2007, 2007 IEEE/ACM International Conference on Computer-Aided Design.

[20]  Farid N. Najm,et al.  Circuit Simulation , 2010 .

[21]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[22]  Paul I. Barton,et al.  The Per2 Negative Feedback Loop Sets the Period in the Mammalian Circadian Clock Mechanism , 2007, PLoS Comput. Biol..

[23]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[24]  Soumyajit Mandal,et al.  Log-domain circuit models of chemical reactions , 2009, 2009 IEEE International Symposium on Circuits and Systems.

[25]  T. Kondo,et al.  Reconstitution of Circadian Oscillation of Cyanobacterial KaiC Phosphorylation in Vitro , 2005, Science.

[26]  Jared E. Toettcher,et al.  A synthetic–natural hybrid oscillator in human cells , 2010, Proceedings of the National Academy of Sciences.

[27]  Bruce Tidor,et al.  Sloppy models, parameter uncertainty, and the role of experimental design. , 2010, Molecular bioSystems.

[28]  Gene H. Golub,et al.  Matrix computations , 1983 .

[29]  Farid N. Najm,et al.  Circuit Simulation , 2010 .