Multimedia Data Mining

*Each chapter should be preceded by an abstract (10–15 lines long) that summarizes the content. The abstract will appear onlineat www.SpringerLink.com and be available with unrestricted access. This allows unregistered users to read the abstract as a teaser for the complete chapter. As a general rule the abstracts will not appear in the printed version of your book unless it is the style of your particular book or that of the series to which your book belongs. Please use the ’starred’ version of the new Springer abstract command for typesetting the text of the online abstracts (cf. source file of this chapter template abstract) and include them with the source files of your manuscript. Use the plain abstract command if the abstract is also to appear in the printed version of the book.

[1]  Wai C. Chu,et al.  Speech Coding Algorithms , 2003 .

[2]  Ata Kabán,et al.  On an equivalence between PLSI and LDA , 2003, SIGIR.

[3]  Jhing-Fa Wang,et al.  Noise-robust pitch detection method using wavelet transform with aliasing compensation , 2002 .

[4]  Stanley F. Chen,et al.  A Gaussian Prior for Smoothing Maximum Entropy Models , 1999 .

[5]  Zhu Liu,et al.  Joint video scene segmentation and classification based on hidden Markov model , 2000, 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532).

[6]  John F. Sowa,et al.  Conceptual Structures: Information Processing in Mind and Machine , 1983 .

[7]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[8]  A. Willsky,et al.  Signals and Systems , 2004 .

[9]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[10]  Malcolm Pradhan,et al.  Optimal Monte Carlo Estimation of Belief Network Inference , 1996, UAI.

[11]  T.S. Huang,et al.  A relevance feedback architecture for content-based multimedia information retrieval systems , 1997, 1997 Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries.

[12]  Alexei A. Efros,et al.  Using Multiple Segmentations to Discover Objects and their Extent in Image Collections , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[13]  Chabane Djeraba,et al.  Association and Content-Based Retrieval , 2003, IEEE Trans. Knowl. Data Eng..

[14]  Chong-Ho Choi,et al.  Input Feature Selection by Mutual Information Based on Parzen Window , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Yoav Freund,et al.  An Adaptive Version of the Boost by Majority Algorithm , 1999, COLT.

[16]  Ching-Tang Hsieh,et al.  Robust speech features based on wavelet transform with application to speaker identification , 2002 .

[17]  W. Eric L. Grimson,et al.  Configuration based scene classification and image indexing , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  Klara Nahrstedt,et al.  Multimedia Fundamentals Vol. 1—Media Coding And Content Processing , 2003 .

[19]  Pietro Perona,et al.  Learning object categories from Google's image search , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[20]  Alberto Del Bimbo,et al.  Editorial: Introduction to the Special Issue on Multimedia Data Mining , 2008, IEEE Trans. Multim..

[21]  Sankar K. Pal,et al.  Soft Computing for Image Processing , 2000 .

[22]  Ba Tu Truong,et al.  Automatic genre identification for content-based video categorization , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[23]  Bernhard Schölkopf,et al.  Comparison of View-Based Object Recognition Algorithms Using Realistic 3D Models , 1996, ICANN.

[24]  Simon L. Kendal,et al.  An introduction to knowledge engineering , 2007 .

[25]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[26]  Zhongfei Zhang,et al.  Semi-supervised learning based object detection in aerial imagery , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[27]  Trieu-Kien Truong,et al.  Audio classification and categorization based on wavelets and support vector Machine , 2005, IEEE Transactions on Speech and Audio Processing.

[28]  Ruofei Zhang,et al.  Region based /spl alpha/-semantics graph driven image retrieval , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[29]  Rohini K. Srihari,et al.  Show&Tell: A Semi-Automated Image Annotation System , 2000, IEEE Multim..

[30]  Borivoje Furht Multimedia Systems and Techniques , 1996 .

[31]  G Salton,et al.  Developments in Automatic Text Retrieval , 1991, Science.

[32]  M. Aizerman,et al.  Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning , 1964 .

[33]  F. Dirfaux Key frame selection to represent a video , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[34]  Zhongfei Zhang,et al.  A Robust Color Object Analysis Approach to Efficient Image Retrieval , 2004, EURASIP J. Adv. Signal Process..

[35]  Lie Lu,et al.  Content analysis for audio classification and segmentation , 2002, IEEE Trans. Speech Audio Process..

[36]  Lior Rokach Mining manufacturing data using genetic algorithm-based feature set decomposition , 2008, Int. J. Intell. Syst. Technol. Appl..

[37]  John Yen,et al.  An adaptive algorithm for learning changes in user interests , 1999, CIKM '99.

[38]  Jaroslav Kautsky,et al.  Smoothed histogram modification for image processing , 1983, Comput. Vis. Graph. Image Process..

[39]  Yixin Chen,et al.  A Region-Based Fuzzy Feature Matching Approach to Content-Based Image Retrieval , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  M. Escobar,et al.  Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[41]  Philip D. Wasserman,et al.  Neural computing - theory and practice , 1989 .

[42]  J. Friedman Stochastic gradient boosting , 2002 .

[43]  Andrew McCallum,et al.  Using Maximum Entropy for Text Classification , 1999 .

[44]  Y. Mori,et al.  Image-to-word transformation based on dividing and vector quantizing images with words , 1999 .

[45]  Jitendra Malik,et al.  Blobworld: A System for Region-Based Image Indexing and Retrieval , 1999, VISUAL.

[46]  W. Eric L. Grimson,et al.  Spatial Latent Dirichlet Allocation , 2007, NIPS.

[47]  Federico Girosi,et al.  An improved training algorithm for support vector machines , 1997, Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop.

[48]  Robert E. Schapire,et al.  The strength of weak learnability , 1990, Mach. Learn..

[49]  B. S. Manjunath,et al.  NeTra: A toolbox for navigating large image databases , 1997, Proceedings of International Conference on Image Processing.

[50]  Nando de Freitas,et al.  Bayesian Feature Weighting for Unsupervised Learning, with Application to Object Recognition , 2003, AISTATS.

[51]  Douglas Keislar,et al.  Content-Based Classification, Search, and Retrieval of Audio , 1996, IEEE Multim..

[52]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[53]  Rafik A. Aliev,et al.  Soft Computing and Its Applications , 2001 .

[54]  Edward Y. Chang,et al.  CBSA: content-based soft annotation for multimodal image retrieval using Bayes point machines , 2003, IEEE Trans. Circuits Syst. Video Technol..

[55]  Wei-Ying Ma,et al.  VIPS: a Vision-based Page Segmentation Algorithm , 2003 .

[56]  Steven L. Tanimoto The Elements of Artificial Intelligence Using Common Lisp , 1995 .

[57]  S. Mallat A wavelet tour of signal processing , 1998 .

[58]  R. Manmatha,et al.  Automatic image annotation and retrieval using cross-media relevance models , 2003, SIGIR.

[59]  Thorsten Joachims,et al.  Training linear SVMs in linear time , 2006, KDD '06.

[60]  Michael I. Jordan,et al.  Unsupervised Learning from Dyadic Data , 1998 .

[61]  S. Sathiya Keerthi,et al.  A Modified Finite Newton Method for Fast Solution of Large Scale Linear SVMs , 2005, J. Mach. Learn. Res..

[62]  Gregory F. Cooper,et al.  A Bayesian Method for the Induction of Probabilistic Networks from Data , 1992 .

[63]  Tara N. Sainath,et al.  Audio classification using extended baum-welch transformations , 2007, INTERSPEECH.

[64]  Thomas G. Dietterich,et al.  Solving the Multiple Instance Problem with Axis-Parallel Rectangles , 1997, Artif. Intell..

[65]  Wei-Hao Lin,et al.  News video classification using SVM-based multimodal classifiers and combination strategies , 2002, MULTIMEDIA '02.

[66]  R. Manmatha,et al.  Multiple Bernoulli relevance models for image and video annotation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[67]  Zoubin Ghahramani,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[68]  Wei Dai,et al.  Joint categorization of queries and clips for web-based video search , 2006, MIR '06.

[69]  Zhi-Hua Zhou,et al.  On the relation between multi-instance learning and semi-supervised learning , 2007, ICML '07.

[70]  Hans C. Jessen,et al.  Applied Logistic Regression Analysis , 1996 .

[71]  David V. Anderson,et al.  A Physiologically Inspired Method for Audio Classification , 2005, EURASIP J. Adv. Signal Process..

[72]  Thomas S. Huang,et al.  Water-filling: a novel way for image structural feature extraction , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[73]  Gang Wei,et al.  Video classification based on HMM using text and faces , 2000, 2000 10th European Signal Processing Conference.

[74]  Osamu Watanabe,et al.  MadaBoost: A Modification of AdaBoost , 2000, COLT.

[75]  Christos Faloutsos,et al.  Efficient and effective Querying by Image Content , 1994, Journal of Intelligent Information Systems.

[76]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[77]  Hans-Peter Kriegel,et al.  Knowing a tree from the forest: art image retrieval using a society of profiles , 2003, MULTIMEDIA '03.

[78]  Tomás Lozano-Pérez,et al.  A Framework for Multiple-Instance Learning , 1997, NIPS.

[79]  Jing Huang,et al.  Image indexing using color correlograms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[80]  Qi Zhang,et al.  Content-Based Image Retrieval Using Multiple-Instance Learning , 2002, ICML.

[81]  Yoav Freund,et al.  Large Margin Classification Using the Perceptron Algorithm , 1998, COLT.

[82]  Neill W. Campbell,et al.  Iterative refinement by relevance feedback in content-based digital image retrieval , 1998, MULTIMEDIA '98.

[83]  Carl E. Rasmussen,et al.  Factorial Hidden Markov Models , 1997 .

[84]  John D. Lafferty,et al.  Inducing Features of Random Fields , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[85]  Yihong Gong,et al.  Machine Learning for Multimedia Content Analysis (Multimedia Systems and Applications) , 2007 .

[86]  David D. Jensen,et al.  Identifying Predictive Structures in Relational Data Using Multiple Instance Learning , 2003, ICML.

[87]  Ramesh C. Jain Content-based multimedia information management , 1998, Proceedings 14th International Conference on Data Engineering.

[88]  Claude E. Shannon,et al.  Prediction and Entropy of Printed English , 1951 .

[89]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[90]  Mikhail Belkin,et al.  Beyond the point cloud: from transductive to semi-supervised learning , 2005, ICML.

[91]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[92]  Ramesh Jain,et al.  Infoscopes: Multimedia Information Systems , 1996 .

[93]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[94]  Ben Taskar,et al.  Max-Margin Markov Networks , 2003, NIPS.

[95]  Ronald Rosenfeld,et al.  Adaptive Statistical Language Modeling; A Maximum Entropy Approach , 1994 .

[96]  David A. Forsyth,et al.  Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary , 2002, ECCV.

[97]  Michael I. Jordan,et al.  Modeling annotated data , 2003, SIGIR.

[98]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[99]  Hayit Greenspan,et al.  A Continuous Probabilistic Framework for Image Matching , 2001, Comput. Vis. Image Underst..

[100]  Alexei A. Efros,et al.  Discovering object categories in image collections , 2005 .

[101]  Richard M. Stern,et al.  Speech in Noisy Environments: robust automatic segmentation, feature extraction, and hypothesis combination , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[102]  Thomas Hofmann,et al.  Statistical Models for Co-occurrence Data , 1998 .

[103]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[104]  Patrick Haffner,et al.  Support vector machines for histogram-based image classification , 1999, IEEE Trans. Neural Networks.

[105]  Matthew Zeidenberg,et al.  Neural networks in artificial intelligence , 1990, Ellis Horwood series in artificial intelligence.

[106]  Lei Zhu,et al.  Theory of keyblock-based image retrieval , 2002, TOIS.

[107]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[108]  Wei-Ying Ma,et al.  A probabilistic semantic model for image annotation and multi-modal image retrieval , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[109]  Marvin Minsky,et al.  A framework for representing knowledge , 1974 .

[110]  Martijn Koster,et al.  ALIWEB - Archie-like Indexing in the WEB , 1994, Comput. Networks ISDN Syst..

[111]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[112]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[113]  P. Spirtes,et al.  Causation, prediction, and search , 1993 .

[114]  Hui Zhang,et al.  Local image representations using pruned salient points with applications to CBIR , 2006, MM '06.

[115]  R. Manmatha,et al.  A Model for Learning the Semantics of Pictures , 2003, NIPS.

[116]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[117]  Thomas Hofmann,et al.  Support vector machine learning for interdependent and structured output spaces , 2004, ICML.

[118]  Avrim Blum,et al.  The Bottleneck , 2021, Monopsony Capitalism.

[119]  Klara Nahrstedt,et al.  Media coding and content processing , 2002 .

[120]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[121]  Bo Zhang,et al.  An effective region-based image retrieval framework , 2002, MULTIMEDIA '02.

[122]  Rangachar Kasturi,et al.  Machine vision , 1995 .

[123]  Michael J. Pazzani,et al.  Learning and Revising User Profiles: The Identification of Interesting Web Sites , 1997, Machine Learning.

[124]  Yixin Chen,et al.  Content-based image retrieval by clustering , 2003, MIR '03.

[125]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[126]  D. E. Rumelhart,et al.  Learning internal representations by back-propagating errors , 1986 .

[127]  C.-C. Jay Kuo,et al.  Audio content analysis for online audiovisual data segmentation and classification , 2001, IEEE Trans. Speech Audio Process..

[128]  Yoram Singer,et al.  Leveraging the margin more carefully , 2004, ICML.

[129]  Margaret H. Dunham,et al.  Data Mining: Introductory and Advanced Topics , 2002 .

[130]  Li Fei-Fei,et al.  Spatially coherent latent topic model for concurrent object segmentation and classification , 2007 .

[131]  Jitendra Malik,et al.  Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[132]  Hong Heather Yu,et al.  Scenic classification methods for image and video databases , 1995, Other Conferences.

[133]  P. Anandan,et al.  Pattern-recognizing stochastic learning automata , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[134]  V. S. Subrahmanian Principles of Multimedia Database Systems , 1998 .

[135]  Yoav Freund,et al.  Boosting a weak learning algorithm by majority , 1990, COLT '90.

[136]  David A. Forsyth,et al.  Learning the semantics of words and pictures , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[137]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[138]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[139]  David B. Cooper,et al.  Recognition and positioning of rigid objects using algebraic moment invariants , 1991, Optics & Photonics.

[140]  Zhongfei Zhang,et al.  Exploiting the cognitive synergy between different media modalities in multimodal information retrieval , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[141]  Kohji Fukunaga,et al.  Introduction to Statistical Pattern Recognition-Second Edition , 1990 .

[142]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[143]  V. S. Subrahmanian,et al.  Heterogeneous Multimedia Reasoning , 1995, Computer.

[144]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[145]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[146]  Michael I. Jordan,et al.  Variational methods for the Dirichlet process , 2004, ICML.

[147]  Fabio Roli,et al.  Bayesian relevance feedback for content-based image retrieval , 2004, Pattern Recognit..

[148]  Jing Huang,et al.  An automatic hierarchical image classification scheme , 1998, MULTIMEDIA '98.

[149]  Bo Zhang,et al.  An efficient and effective region-based image retrieval framework , 2004, IEEE Transactions on Image Processing.

[150]  Hayit Greenspan,et al.  Context-dependent segmentation and matching in image databases , 2004, Comput. Vis. Image Underst..

[151]  Christos Faloutsos,et al.  Enhanced max margin learning on multimodal data mining in a multimedia database , 2007, KDD '07.

[152]  James Ze Wang,et al.  Automatic Linguistic Indexing of Pictures by a Statistical Modeling Approach , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[153]  Ruofei Zhang,et al.  Multimedia Data Mining: A Systematic Introduction to Concepts and Theory , 2008 .

[154]  Peter L. Bartlett,et al.  Boosting Algorithms as Gradient Descent , 1999, NIPS.

[155]  Alexander J. Smola,et al.  Support Vector Regression Machines , 1996, NIPS.

[156]  Lior Rokach,et al.  Information Retrieval System for Medical Narrative Reports , 2004, FQAS.

[157]  Nozha Boujemaa,et al.  Embedding fuzzy logic in content based image retrieval , 2000, PeachFuzz 2000. 19th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.00TH8500).

[158]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[159]  Nando de Freitas,et al.  A Statistical Model for General Contextual Object Recognition , 2004, ECCV.

[160]  W. Eric L. Grimson,et al.  Unsupervised Activity Perception by Hierarchical Bayesian Models , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[161]  Zhongfei Zhang,et al.  Hidden semantic concept discovery in region based image retrieval , 2004, CVPR 2004.

[162]  Yi Wu,et al.  Ontology-based multi-classification learning for video concept detection , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[163]  Ian H. Witten,et al.  Searching digital music libraries , 2002, Inf. Process. Manag..

[164]  Zhongfei Zhang,et al.  A data mining approach to modeling relationships among categories in image collection , 2004, KDD '04.

[165]  V. Barnett,et al.  Probability and Statistics: Theory and Applications. , 1978 .

[166]  Qi Zhang,et al.  EM-DD: An Improved Multiple-Instance Learning Technique , 2001, NIPS.

[167]  Hilary Putnam,et al.  Reasoning and the logic of things , 1992 .

[168]  Ayhan Demiriz,et al.  Linear Programming Boosting via Column Generation , 2002, Machine Learning.

[169]  Edward Y. Chang,et al.  Optimal multimodal fusion for multimedia data analysis , 2004, MULTIMEDIA '04.

[170]  Pietro Perona,et al.  One-shot learning of object categories , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[171]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[172]  Wolfgang Effelsberg,et al.  Automatic recognition of film genres , 1995, MULTIMEDIA '95.

[173]  Latifur Khan,et al.  Multimedia Data Mining and Knowledge Discovery , 2006 .

[174]  John F. Sowa,et al.  Knowledge representation: logical, philosophical, and computational foundations , 2000 .

[175]  P. Nurmi Mixture Models , 2008 .

[176]  Yixin Chen,et al.  MILES: Multiple-Instance Learning via Embedded Instance Selection , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[177]  Daniel Marcu,et al.  Learning as search optimization: approximate large margin methods for structured prediction , 2005, ICML.

[178]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[179]  William I. Grosky,et al.  Narrowing the semantic gap - improved text-based web document retrieval using visual features , 2002, IEEE Trans. Multim..

[180]  Shih-Fu Chang,et al.  Visual information retrieval from large distributed online repositories , 1997, CACM.

[181]  Ricky K. Taira,et al.  A Knowledge-Based Approach for Retrieving Images by Content , 1996, IEEE Trans. Knowl. Data Eng..

[182]  Guodong Guo,et al.  Content-based audio classification and retrieval by support vector machines , 2003, IEEE Trans. Neural Networks.

[183]  P. Hayes The Logic of Frames , 1981 .

[184]  Ethem Alpaydin,et al.  Support Vector Machines for Multi-class Classification , 1999, IWANN.

[185]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[186]  Alex Pentland,et al.  Photobook: tools for content-based manipulation of image databases , 1994, Other Conferences.

[187]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[188]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[189]  V. Vapnik Pattern recognition using generalized portrait method , 1963 .

[190]  C. Faloutsos,et al.  On the Scalability and Adaptability for Multimodal Retrieval and Annotation , 2007, 14th International Conference of Image Analysis and Processing - Workshops (ICIAPW 2007).

[191]  Christos Faloutsos,et al.  Searching Multimedia Databases by Content , 1996, Advances in Database Systems.

[192]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[193]  Thomas Hofmann,et al.  Hidden Markov Support Vector Machines , 2003, ICML.

[194]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[195]  Samuel Kaski,et al.  Self organization of a massive document collection , 2000, IEEE Trans. Neural Networks Learn. Syst..

[196]  Yiming Yang,et al.  An example-based mapping method for text categorization and retrieval , 1994, TOIS.

[197]  Zhongfei Zhang,et al.  Effective Image Retrieval Based on Hidden Concept Discovery in Image Database , 2007, IEEE Transactions on Image Processing.

[198]  Rong Yan,et al.  Learning query-class dependent weights in automatic video retrieval , 2004, MULTIMEDIA '04.

[199]  M. Goldstein,et al.  Multivariate Analysis: Methods and Applications , 1984 .

[200]  Ellen K. Hughes,et al.  Video OCR for digital news archive , 1998, Proceedings 1998 IEEE International Workshop on Content-Based Access of Image and Video Database.

[201]  Pietro Perona,et al.  A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[202]  David R. Karger,et al.  Tackling the Poor Assumptions of Naive Bayes Text Classifiers , 2003, ICML.

[203]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[204]  Ute St. Clair,et al.  Fuzzy Set Theory: Foundations and Applications , 1997 .

[205]  Tobun Dorbin Ng,et al.  Video retrieval using speech and image information , 2003, IS&T/SPIE Electronic Imaging.

[206]  C. Lee Giles,et al.  Self-adaptive user profiles for large-scale data delivery , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[207]  F. Downton Stochastic Approximation , 1969, Nature.

[208]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[209]  Opper,et al.  Generalization performance of Bayes optimal classification algorithm for learning a perceptron. , 1991, Physical review letters.

[210]  A. P. deVries,et al.  Experimental evaluation of a generative probabilistic image retrieval model on 'easy' data , 2003 .

[211]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[212]  Edward P. K. Tsang,et al.  Foundations of constraint satisfaction , 1993, Computation in cognitive science.

[213]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[214]  Ramin Zabih,et al.  Histogram refinement for content-based image retrieval , 1996, Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96.

[215]  Xiaojin Zhu,et al.  --1 CONTENTS , 2006 .

[216]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[217]  Ian H. Witten,et al.  Comparing human and computational models of music prediction , 1994 .

[218]  Ben Taskar,et al.  Learning structured prediction models: a large margin approach , 2005, ICML.

[219]  Aidong Zhang,et al.  Data Resource Selection in Distributed Visual Information Systems , 1998, IEEE Trans. Knowl. Data Eng..

[220]  L. Rokach,et al.  Data mining by attribute decomposition with semiconductor manufacturing case study , 2001 .

[221]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[222]  Allen Gersho,et al.  Asymptotically optimal block quantization , 1979, IEEE Trans. Inf. Theory.

[223]  Daniel Gatica-Perez,et al.  PLSA-based image auto-annotation: constraining the latent space , 2004, MULTIMEDIA '04.

[224]  Peter Auer,et al.  On Learning From Multi-Instance Examples: Empirical Evaluation of a Theoretical Approach , 1997, ICML.

[225]  Thomas Hofmann,et al.  Unsupervised Learning by Probabilistic Latent Semantic Analysis , 2004, Machine Learning.

[226]  Christos Faloutsos,et al.  Semi-Supervised Learning Based on Semiparametric Regularization , 2008, SDM.

[227]  Tomás Lozano-Pérez,et al.  Image database retrieval with multiple-instance learning techniques , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[228]  V. J. Rayward-Smith,et al.  Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition , 1999 .

[229]  D.P. Skinner,et al.  The cepstrum: A guide to processing , 1977, Proceedings of the IEEE.

[230]  Weikang Gu,et al.  A new fourier description based on areas (AFD) and its applications in object recognition , 1988, Proceedings of the 1988 IEEE International Conference on Systems, Man, and Cybernetics.

[231]  Gunnar Rätsch,et al.  Totally corrective boosting algorithms that maximize the margin , 2006, ICML.

[232]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[233]  J. Lafferty,et al.  Time-Sensitive Dirichlet Process Mixture Models , 2005 .

[234]  Stan Z. Li,et al.  Content-based audio classification and retrieval using the nearest feature line method , 2000, IEEE Trans. Speech Audio Process..

[235]  W.E.L. Grimson,et al.  Training templates for scene classification using a few examples , 1997, 1997 Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries.

[236]  Jorma Rissanen,et al.  Stochastic Complexity in Statistical Inquiry , 1989, World Scientific Series in Computer Science.

[237]  John R. Smith,et al.  IBM Research TRECVID-2009 Video Retrieval System , 2009, TRECVID.

[238]  B. S. Manjunath,et al.  A comparison of wavelet transform features for texture image annotation , 1995, Proceedings., International Conference on Image Processing.

[239]  Zhongfei Zhang,et al.  Object detection in aerial imagery based on enhanced semi-supervised learning , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[240]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[241]  Zhongfei Zhang,et al.  FAST: Toward more effective and efficient image retrieval , 2005, Multimedia Systems.

[242]  C. Burrus,et al.  Introduction to Wavelets and Wavelet Transforms: A Primer , 1997 .

[243]  Chabane Djeraba,et al.  Multimedia Mining: A Highway to Intelligent Multimedia Documents , 2002, Multimedia Systems and Applications.

[244]  David A. Forsyth,et al.  Matching Words and Pictures , 2003, J. Mach. Learn. Res..

[245]  Kumpati S. Narendra,et al.  Learning Automata - A Survey , 1974, IEEE Trans. Syst. Man Cybern..

[246]  Mei-Chen Yeh,et al.  Multimodal fusion using learned text concepts for image categorization , 2006, MM '06.

[247]  Qi Tian,et al.  Spatial visualization for content-based image retrieval , 2001, IEEE International Conference on Multimedia and Expo, 2001. ICME 2001..

[248]  Alexander G. Hauptmann,et al.  Successful approaches in the TREC video retrieval evaluations , 2004, MULTIMEDIA '04.