Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing.

[1]  L. Murr,et al.  Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. , 2009, Journal of the mechanical behavior of biomedical materials.

[2]  David Hui,et al.  A critical review on polymer-based bio-engineered materials for scaffold development , 2007 .

[3]  E. Sachs,et al.  Design and fabrication of cast orthopedic implants with freeform surface textures from 3-D printed ceramic shell. , 2000, Journal of biomedical materials research.

[4]  M. Cima,et al.  Production of injection molding tooling with conformal cooling channels using the three dimensional printing process , 2000 .

[5]  P H Krebsbach,et al.  Engineering craniofacial scaffolds. , 2005, Orthodontics & craniofacial research.

[6]  Frank Witte,et al.  In vitro and in vivo corrosion measurements of magnesium alloys. , 2006, Biomaterials.

[7]  B. Nies,et al.  Microstructure, cytotoxicity and corrosion of powder-metallurgical iron alloys for biodegradable bone replacement materials , 2011 .

[8]  F. Prima,et al.  Effect of electrodeposition current density on the microstructure and the degradation of electroformed iron for degradable stents , 2011 .

[9]  E. A. Wilson,et al.  A study of grain boundary embrittlement in an Fe–8%Mn alloy , 2000 .

[10]  Y. Endoh,et al.  Antiferromagnetism of γ‐FeMn Alloys , 1968 .

[11]  M. Cima,et al.  Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model , 1990 .

[12]  Jeffrey Bonadio,et al.  Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration , 1999, Nature Medicine.

[13]  T. Woodfield,et al.  Synthesis of topologically-ordered open-cell porous magnesium , 2010 .

[14]  Csaba Vermes,et al.  Concentration- and composition-dependent effects of metal ions on human MG-63 osteoblasts. , 2002, Journal of biomedical materials research.

[15]  A. Rabinkin,et al.  On the f.c.c. → h.c.p. phase transformation in high manganese-iron alloys , 1979 .

[16]  R. Raman,et al.  Comparative studies on the corrosion properties of a Fe-Mn-Al-Si steel and an interstitial-free steel , 2008 .

[17]  Pierre Hardouin,et al.  Biomaterial challenges and approaches to stem cell use in bone reconstructive surgery. , 2004, Drug discovery today.

[18]  Friedrich-Wilhelm Bach,et al.  Histological and molecular evaluation of iron as degradable medical implant material in a murine animal model. , 2012, Journal of biomedical materials research. Part A.

[19]  P. Uggowitzer,et al.  Design strategy for biodegradable Fe-based alloys for medical applications. , 2010, Acta biomaterialia.

[20]  A. F. Guillermet,et al.  On the relative fraction of ɛ martensite in γ-Fe–Mn alloys , 2005 .

[21]  Miqin Zhang,et al.  Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. , 2004, Biomaterials.

[22]  Makarand V Risbud,et al.  Tissue engineering: advances in in vitro cartilage generation. , 2002, Trends in biotechnology.

[23]  D. Mantovani,et al.  Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents. , 2009, Journal of biomedical materials research. Part A.

[24]  T. F. Volynova,et al.  Mechanical properties and the fine structure of powdered iron-manganese alloys , 1986 .

[25]  Yufeng Zheng,et al.  In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material , 2011 .

[26]  D. Mantovani,et al.  Development of Degradable Fe-35Mn Alloy for Biomedical Application , 2006 .

[27]  A. Rabinkin On magnetic contributions to γ→ε phase transformations in Fe-Mn alloys , 1979 .

[28]  Frederik L. Giesel,et al.  3D printing based on imaging data: review of medical applications , 2010, International Journal of Computer Assisted Radiology and Surgery.

[29]  S. Furner,et al.  Musculoskeletal Conditions in the United States , 1992 .

[30]  Diego Mantovani,et al.  Iron–manganese: New class of metallic degradable biomaterials prepared by powder metallurgy , 2008 .

[31]  Binil Starly,et al.  Bio-CAD modeling and its applications in computer-aided tissue engineering , 2005, Comput. Aided Des..

[32]  A. Yamamoto,et al.  Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. , 1998, Journal of biomedical materials research.

[33]  D. Mantovani,et al.  Electroformed pure iron as a new biomaterial for degradable stents: in vitro degradation and preliminary cell viability studies. , 2010, Acta biomaterialia.

[34]  A. Burstein,et al.  The Mechanical Properties of Cortical Bone , 1974 .

[35]  Hermann Seitz,et al.  Bioceramic Granulates for use in 3D Printing: Process Engineering Aspects , 2006 .

[36]  S. Hollister Porous scaffold design for tissue engineering , 2005, Nature materials.

[37]  Florencia Edith Wiria,et al.  Printing of Titanium implant prototype , 2010 .

[38]  J O Hollinger,et al.  The critical size defect as an experimental model for craniomandibulofacial nonunions. , 1986, Clinical orthopaedics and related research.

[39]  M Bohner,et al.  Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. , 2011, Acta biomaterialia.

[40]  Philipp Beerbaum,et al.  Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. , 2006, Biomaterials.

[41]  F. Prima,et al.  Electroformed iron as new biomaterial for degradable stents: development process and structure-properties relationship. , 2010, Acta biomaterialia.

[42]  Michael J. Cima,et al.  Structural Ceramic Components by 3D Printing , 1993 .

[43]  S. Tsurekawa,et al.  The Control of Oxidation-Induced Intergranular Embrittlement by Grain Boundary Engineering in Rapidly Solidified Ni-Fe Alloy Ribbons , 2003 .

[44]  A. Grajcar,et al.  Corrosion resistance of high-manganese austenitic steels , 2010 .

[45]  D. Mantovani,et al.  Fe-Mn alloys for metallic biodegradable stents: degradation and cell viability studies. , 2010, Acta biomaterialia.

[46]  M. Peuster,et al.  A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal—results 6–18 months after implantation into New Zealand white rabbits , 2001, Heart.