Thermal stability and flame retardancy of polyurethanes

Abstract The thermal stability and flame retardancy of polyurethanes is reviewed. Polyurethanes (PUs) are an important class of polymers that have wide application in a number of different industrial sectors. More than 70% of the literature that deals with PUs evaluates their thermal stability or flame retardancy and attempts to provide a structure–property correlation. The importance of studying thermal degradation, understanding the processes occurring during thermal stress as well as the parameters affecting the thermal stability of PUs are essential in order to effectively design polyurethanes having tailor-made properties suitable for the particular environment where they are to be used. A detailed description of TGA, TGA-MS and TGA-FTIR methods for studying the decomposition mechanism and kinetics is also a part of this review. In general, thermal decomposition of PUs begins with the hard segment (HS) and a number of parameters govern a polyurethane's thermal stability. Detailed description of the parameters such as HS, soft segment (SS) and chain extender (CE) structure and molecular weight, NCO:OH ratio, catalyst nature and crosslink density that affect the nature of PU degradation is given. Descriptions of approaches to improve the thermal stability in PUs such as formation of poly(urethane-isocyanurate), poly(urethane-oxazolidone) and poly(urethane-imide) in addition to other methods such as PUs with an s-triazine ring or increased aromatic ring concentration, azomethane linkages as well as use of hyperbranched polyols as crosslinking agents is given. A part of the review is also concentrated on the improvement of thermal stability via hybrid formation such as the incorporation of appropriate amounts of fillers, e.g., nano-silica; Fe 2 O 3 ; TiO 2 ; silica grafting; nanocomposite formation using organically modified layered silicates; incorporation of Si–O–Si crosslinked structures via sol–gel processes; and the incorporation of polyhedral oligomeric silsesquioxane (POSS) structures into the PU backbone or side chain. Incorporation of carbon nanotubes (CNT) into PUs and the use of functionalized fullerenes in PUs are also described as these are the newest tools to obtain good thermal stability and flame retardancy. Part of the review also concentrates on the process that occurs during burning of PUs, flame retardant mechanisms and different additives or reactive type flame retardants used in the PU industry. The use and working function of expandable graphite and melamine as additive type flame retardants are shown. Description of the use of different reactive type organophosphorus compounds, cyclotriphosphazenes, aziridinyl curing agents in aqueous polyurethane dispersions (PUDs), organoboron compounds and organosilicon compounds for improving flame retardancy is also given.

[1]  Zhong‐Ming Li,et al.  Flame retardancy of different-sized expandable graphite particles for high-density rigid polyurethane foams , 2006 .

[2]  N. Grassie,et al.  Thermal degradation of polyether-urethanes-5 polyether-urethanes prepared from methylene bis (4-phenylisocyanate) and high molecular weight poly(ethylene glycols) and the effect of ammonium polyphosphate , 1985 .

[3]  Jinhwan Kim,et al.  Synthesis and performance of cyclic phosphorus-containing flame retardants , 2008 .

[4]  Tăchiță Vlad‐Bubulac,et al.  Synthesis and characterization of new polyesters with enhanced phosphorus content , 2005 .

[5]  M. Voronkov,et al.  The siloxane bond : physical properties and chemical transformations , 1978 .

[6]  H. Yeganeh,et al.  Poly(urethane-imide-imide), a new generation of thermoplastic polyurethane elastomers with enhanced thermal stability , 2004 .

[7]  Y. Shu,et al.  Thermal degradation of poly(siloxane-urethane) copolymers , 2008 .

[8]  S. D. Bruck Thermally stable polymeric materials , 1965 .

[9]  C. A. Wilkie TGA/FTIR: an extremely useful technique for studying polymer degradation , 1999 .

[10]  W. Kim,et al.  Effects of ultrasound on the synthesis and properties of polyurethane foam/clay nanocomposites , 2006 .

[11]  Hongzhi Liu,et al.  Polyurethane Networks Nanoreinforced by Polyhedral Oligomeric Silsesquioxane , 2005 .

[12]  G. N. Mathur,et al.  Thermooxidation and Stabilization of Urethane and Urethane-Urea Block Copolymers , 1984 .

[13]  J. Pielichowski,et al.  Thermische degradation von MDI-basierenden polyurethanen: Charakteristische abhängigkeiten zwischen den zersetzungsparametern , 1996 .

[14]  Jin-Hae Chang,et al.  Nanocomposites of polyurethane with various organoclays: Thermomechanical properties, morphology, and gas permeability* , 2002 .

[15]  A. M. Batt,et al.  The Mechanism and Performance of Combustion Modified Flexible Foams in Small Scale Fire Tests , 1989 .

[16]  Sang-Woo Park,et al.  Nanosilica-reinforced UV-cured polyurethane dispersion , 2006 .

[17]  S. Cooper,et al.  Some results on electron microscope investigations of polyether‐urethane and polyester‐urethane block copolymers , 1970 .

[18]  B. Simionescu,et al.  Synthesis and properties of some new polyazomethine-urethanes , 2002 .

[19]  Haruhiko Tanaka,et al.  A kinetic compensation effect established for the thermal decomposition of a solid , 1991 .

[20]  K. Pielichowski,et al.  Thermo(oxidative) stability of novel polyurethane/POSS nanohybrid elastomers , 2008 .

[21]  X. Bian,et al.  Dependence of flame-retardant properties on density of expandable graphite filled rigid polyurethane foam , 2007 .

[22]  M. Modesti,et al.  An experimental method for evaluating isocyanate conversion and trimer formation in polyisocyanate–polyurethane foams , 2001 .

[23]  J. Lubczak Synthesis of s-triazine polyetherols from bis(methoxymethyl)melamine and oxiranes , 1997 .

[24]  B. Sreedhar,et al.  Thermal and dynamic mechanical characterization of polyurethane-urea-imide coatings , 2006 .

[25]  V. Bulacovschi,et al.  Thermal stability and the tensile properties of some segmented poly(ester-siloxane)urethanes , 1999 .

[26]  B. Sreedhar,et al.  Thermal, mechanical, and surface characterization of starch–poly(vinyl alcohol) blends and borax‐crosslinked films , 2005 .

[27]  M. Zulfiqar,et al.  Thermal degradation of a series of polyester polyurethanes , 1980 .

[28]  C. R. Nair,et al.  Effect of imide–oxazolidinone modification on the thermal and mechanical properties of HTPB‐polyurethanes , 1999 .

[29]  A. Bhattacharyya,et al.  Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion , 2004 .

[30]  Xinling Wang,et al.  Synthesis and characterization of polyurethane urea based on fluorine‐containing bisphenoxydiamine , 2006 .

[31]  Mo Song,et al.  Preparation and characterisation of polyurethane grafted single-walled carbon nanotubes and derived polyurethane nanocomposites , 2006 .

[32]  Q. Cao,et al.  Structure and Mechanical Properties of Shape Memory Polyurethane Based on Hyperbranched Polyesters , 2006 .

[33]  M. Day,et al.  Degradation of contaminated plastics: a kinetic study , 1995 .

[34]  R. Morris,et al.  Synthesis of highly functionalised dendrimers based on polyhedral silsesquioxane cores , 1998 .

[35]  T. Servay,et al.  Thermal oxidation of the methylene diphenylene unit in MDI-TPU , 2000 .

[36]  B. Sreedhar,et al.  Thermal stability of chemically crosslinked moisture‐cured polyurethane coatings , 2005 .

[37]  S. Packirisamy Decaborane(14)-based polymers , 1996 .

[38]  Siddaramaiah,et al.  Chain‐extended polyurethanes—Synthesis and characterization , 2002 .

[39]  S. Oh,et al.  A kinetic analysis of thermal degradation of polymers using a dynamic method , 2000 .

[40]  H. Yeganeh,et al.  Novel method for preparation of polyurethane elastomers with improved thermal stability and electrical insulating properties , 2007 .

[41]  Jurgen H. Troitzsch,et al.  International Plastics Flammability Handbook: Principles - Regulations - Testing and Approval , 1990 .

[42]  Rafael Bilbao,et al.  Kinetics of the thermal decomposition of polyurethane foams in nitrogen and air atmospheres , 1996 .

[43]  Yong Ni,et al.  Polyurethane Networks Modified with Octa(propylglycidyl ether) Polyhedral Oligomeric Silsesquioxane , 2006 .

[44]  J. Cadogan,et al.  Organophosphorus Chemistry Today , 1987 .

[45]  M. Matuszak,et al.  Thermal degradation of linear polyurethanes and model biscarbamates , 1973 .

[46]  Rayford G. Anthony,et al.  Polymerization of styrene with n‐butyllithium in a batch reactor. A mathematical model , 1978 .

[47]  B. Sreedhar,et al.  Thermal and surface characterization of plasticized starch polyvinyl alcohol blends crosslinked with epichlorohydrin , 2006 .

[48]  J. Blackwell,et al.  Conformational analysis of poly(MDI-butandiol) hard segment in polyurethane elastomers , 1981 .

[49]  A. Issam,et al.  Improvement of thermal stability of new heteroaromatic poly(azomethine urethane)s , 2006 .

[50]  S. Saikrasun,et al.  Thermal decomposition kinetics of thermotropic liquid crystalline p-hydroxy benzoic acid/poly(ethylene terephthalate) copolyester , 2005 .

[51]  A. Takahara,et al.  Effect of soft segment chemistry on the biostability of segmented polyurethanes. I. In vitro oxidation. , 1991, Journal of biomedical materials research.

[52]  S. Foti,et al.  Direct mass spectrometry of polymers. VII. Primary thermal fragmentation processes in polycarbonates , 1983 .

[53]  D. L. Buszard,et al.  The Performance of Flame Retardants in Rigid Polyurethane Foam Formulations , 1985, Cellular Polymers.

[54]  G. Camino,et al.  Mechanism of thermal degradation of fire retardant melamine salts , 1990 .

[55]  M. Blazsó Recent trends in analytical and applied pyrolysis of polymers , 1997 .

[56]  Wei Ke,et al.  Effect of acrylic polymer and nanocomposite with nano-SiO2 on thermal degradation and fire resistance of APP-DPER-MEL coating , 2006 .

[57]  L. Żabski,et al.  Flame retarded rigid polyurethane foams by chemical modification with phosphorus- and nitrogen-containing polyols , 1994 .

[58]  P. Kaszyński Four Decades of Organic Chemistry of closo -Boranes: A Synthetic Toolbox for Constructing Liquid Crystal Materials. A Review , 1999 .

[59]  A. Broido A simple, sensitive graphical method of treating thermogravimetric analysis data , 1969 .

[60]  A. Yu,et al.  Interfacial interactions and structure of polyurethane intercalated nanocomposite , 2005 .

[61]  Y. Kawano,et al.  Thermal degradation of biomedical polyurethanes—A kinetic study using high-resolution thermogravimetry , 2001 .

[62]  Y. Iwakura,et al.  Glycidyl Ether Reactions with Urethanes and Ureas. A New Synthetic Method for 2-Oxazolidones , 1964 .

[63]  Joseph H. Flynn,et al.  A quick, direct method for the determination of activation energy from thermogravimetric data , 1966 .

[64]  Chun-Shan Wang,et al.  Synthesis and properties of epoxy resins containing bis(3-hydroxyphenyl) phenyl phosphate , 2000 .

[65]  Zhao-Xia Guo,et al.  The influence of silane treatment on nylon 6/nano-SiO2 in situ polymerization , 2002 .

[66]  C. Chao,et al.  Comparison of the Thermal Decomposition Behavior of a Non-Fire Retarded and a Fire Retarded Flexible Polyurethane Foam with Phosphorus and Brominated Additives , 2001 .

[67]  B. Sreedhar,et al.  Thermal and surface characterization of polyurethane–urea clay nanocomposite coatings , 2006 .

[68]  J. Blackwell,et al.  Structure of polyurethane elastomers: effect of chain extender length on the structure of MDI/diol hard segments , 1982 .

[69]  V. Sendijarevic,et al.  Studies in the formation of poly(oxazolidones) I. Kinetics and mechanism of the model oxazolidone formation from phenyl isocyanate and phenylglycidyl ether. Selectivity of catalysts , 1987 .

[70]  A. Asif,et al.  UV curable waterborne polyurethane acrylate dispersions based on hyperbranched aliphatic polyester: effect of molecular structure on physical and thermal properties , 2004 .

[71]  Claire Longuet,et al.  Flame retardancy of silicone-based materials , 2009 .

[72]  E. Han,et al.  Influence of expandable graphite on fire resistance and water resistance of flame-retardant coatings , 2007 .

[73]  A. J. Papa Reactive Flame Retardants for Polyurethane Foams , 1970 .

[74]  E. Dyer,et al.  Thermal degradation of N‐substituted polycarbamates , 1964 .

[75]  Jae Whan Cho,et al.  Polymeric nanocomposites of polyurethane block copolymers and functionalized multi-walled carbon nanotubes as crosslinkers , 2006 .

[76]  S. Foti,et al.  Mechanisms of thermal decomposition in totally aromatic polyurethanes , 1981 .

[77]  Hong Huang,et al.  Thermal degradation of polyurethane based on IPDI , 2009 .

[78]  P. Berg,et al.  The degradation of polyurethane , 1980 .

[79]  S. Bourbigot,et al.  Thermal degradation of polyurethane and polyurethane/expandable graphite coatings , 2001 .

[80]  Y. Chen-Yang,et al.  New UV-curable cyclotriphosphazenes as fire-retardant coating materials for wood , 1998 .

[81]  S. Vinogradova,et al.  The Synthesis of Polycyanates by the Polycyclotrimerisation of Aromatic and Organoelement Cyanate Esters , 1977 .

[82]  Robert P. Lattimer,et al.  Low-temperature pyrolysis products from a polyether-based urethane , 2002 .

[83]  Zhong‐Ming Li,et al.  Expandable graphite for halogen-free flame-retardant of high-density rigid polyurethane foams , 2005 .

[84]  J. Gardette,et al.  Infrared analysis of the photochemical behaviour of segmented polyurethanes : 1. Aliphatic poly(ester-urethane) , 1997 .

[85]  T. Takeichi,et al.  High performance poly(urethane-imide) prepared by introducing imide blocks into the polyurethane backbone , 2005 .

[86]  E. Sargent,et al.  Ultrafast nonresonant third-order optical nonlinearity of fullerene-containing polyurethane films at telecommunication wavelengths , 2003 .

[87]  H. Shen,et al.  Properties and preparation of thermoplastic polyurethane/silica hybrid using sol–gel process , 2005 .

[88]  I. Capek Nature and properties of ionomer assemblies. II. , 2005, Advances in colloid and interface science.

[89]  T. Aminabhavi,et al.  Degradation profiles of polyester‐urethane (HP‐MDI) and polyester‐melamine (HP‐HMMM) coatings: A thermal study , 2005 .

[90]  S. Bourbigot,et al.  Thermal behaviour of cotton-modacrylic fibre blends: kinetic study using the invariant kinetic parameters method , 1996 .

[91]  Barbara C. Levin,et al.  A review of the literature on the gaseous products and toxicity generated from the pyrolysis and combustion of rigid polyurethane foams , 1985 .

[92]  Jingbo Yin,et al.  Surface-grafted silica linked with l-lactic acid oligomer: A novel nanofiller to improve the performance of biodegradable poly(l-lactide) , 2007 .

[93]  K. Pielichowski,et al.  Thermal degradation studies on rigid polyurethane foams blown with pentane , 2003 .

[94]  Trong-Ming Don,et al.  Thermal degradation behavior and flammability of polyurethanes blended with poly(bispropoxyphosphazene) , 1999 .

[95]  Patit Paban Kundu,et al.  Condensation polymers from natural oils , 2008 .

[96]  T. Wang,et al.  Effect of polyol structure and molecular weight on the thermal stability of segmented poly(urethaneureas) , 1997 .

[97]  S. Levchik,et al.  Thermal decomposition, combustion and flame‐retardancy of epoxy resins—a review of the recent literature , 2004 .

[98]  T. R. Hull,et al.  Thermal behaviour of covalently bonded phosphate and phosphonate flame retardant polystyrene systems , 2007 .

[99]  Xinling Wang,et al.  Preparation, morphology, and properties of polyurethane–urea elastomers derived from sulphone‐containing aromatic diamine , 2007 .

[100]  Jung-Hyun Kim,et al.  Synthesis and characterization of water-borne crosslinked silylated polyurethane dispersions , 2005 .

[101]  Ying‐Ling Liu,et al.  Phosphorus-containing epoxy for flame retardance : IV. Kinetics and mechanism of thermal degradation , 1997 .

[102]  Stuart L. Cooper,et al.  Infrared Studies of Segmented Polyurethane Elastomers. II. Infrared Dichroism , 1971 .

[103]  K. Frisch,et al.  Catalysis in Isocyanate Reactions , 1970 .

[104]  John J. Liggat,et al.  Relationship between the thermal degradation chemistry and flammability of commercial flexible polyurethane foams , 2006 .

[105]  M. Modesti,et al.  Thermally stable hybrid foams based on cyclophosphazenes and polyurethanes , 2005 .

[106]  T. Hatakeyama,et al.  TG-FTIR studies on biodegradable polyurethanes containing mono- and disaccharide components , 1996 .

[107]  S. Ko,et al.  Structure and thermal properties of polyether polyurethaneurea elastomers , 1993 .

[108]  Mo Song,et al.  Preparation and characterization of polyurethane-carbon nanotube composites. , 2005, Soft matter.

[109]  Xiaodong Wang,et al.  Synthesis, characterization, thermal properties and flame retardancy of a novel nonflammable phosphazene-based epoxy resin , 2009 .

[110]  Z. Adonyi Quantitative method for comparing thermogravimetric data under various measuring circumstances , 1982 .

[111]  Thomas J. Pinnavaia,et al.  Nanolayer Reinforcement of Elastomeric Polyurethane , 1998 .

[112]  H. Yeganeh,et al.  Synthesis, characterization and properties of novel thermally stable poly(urethane-oxazolidone) elastomers , 2006 .

[113]  Hong-Sun Park,et al.  Syntheses and physical properties of two‐component polyurethane flame‐retardant coatings using chlorine‐containing modified polyesters , 1996 .

[114]  Eun‐Hee Kim,et al.  Polyhedral oligomeric silsesquioxane-reinforced polyurethane acrylate , 2009 .

[115]  S. Bourbigot,et al.  Analysis of Fire Gases Released from Polyurethane and Fire-Retarded Polyurethane Coatings , 2000 .

[116]  M. Erceg,et al.  Kinetic analysis of the non-isothermal degradation of poly(3-hydroxybutyrate) nanocomposites , 2008 .

[117]  C. F. Cullis,et al.  The combustion of flexible polyurethane foams: Mechanisms and evaluation of flame retardance , 1975 .

[118]  M. Zulfiqar,et al.  Thermal degradation of the polyurethane from 1,4‐butanediol and methylene bis(4‐phenyl isocyanate) , 1978 .

[119]  C. A. Wilkie,et al.  A TGA/FTIR and mass spectral study on the thermal degradation of bisphenol A polycarbonate , 2004 .

[120]  V. Sendijarevic,et al.  Novel Heat-Resistant Isocyanate- Based Polymers , 1991 .

[121]  E. Scamporrino,et al.  Mechanism of thermal degradation of polyurethanes: effect of ammonium polyphosphate , 1984 .

[122]  G. Matuschek Thermal degradation of different fire retardant polyurethane foams , 1995 .

[123]  Hasmukh S. Patel,et al.  Poly(urethane-imide)s—1 , 1991 .

[124]  R. Morris,et al.  SYNTHESIS AND CHARACTERISATION OF SILANOL-FUNCTIONALISED DENDRIMERS , 1999 .

[125]  I. Dez,et al.  Synthesis of polyurethane/polyethylene grafted polymers using cyclotriphosphazene as a coupling agent , 2003 .

[126]  Jianzhong Sun,et al.  Synthesis and properties of a phosphorus-containing flame retardant epoxy resin based on bis-phenoxy (3-hydroxy) phenyl phosphine oxide , 2007 .

[127]  C. Dubois,et al.  Polymerization compounding of polyurethane-fumed silica composites , 2006 .

[128]  Lee Wook Jang,et al.  Intercalation of styrene–acrylonitrile copolymer in layered silicate by emulsion polymerization , 1999 .

[129]  B. Adhikari,et al.  Thermal degradation and stability of HTPB-based polyurethane and polyurethaneureas , 2003 .

[130]  D. Mackerron,et al.  Synthesis and degradation of polyurethanes containing phosphorus—Part III: Thermal degradation of a series of polyurethanes incorporating butylene phenylphosphonate structures , 1983 .

[131]  A. Richard Horrocks,et al.  A review of flame retardant polypropylene fibres , 2003 .

[132]  J. Blackwell,et al.  Molecular parameters for the prediction of polyurethane structures , 1984 .

[133]  Krzysztof Pielichowski,et al.  Polymer/montmorillonite nanocomposites with improved thermal properties: Part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes , 2007 .

[134]  K. Rose,et al.  Synthesis of Alkoxysilyl Substituted Cyclophosphazenes and their Properties in the Sol-Gel Process , 1999 .

[135]  J. Morales,et al.  Computer kinetic analysis of simultaneously obtained TG and DTG curves , 1978 .

[136]  Xiaolie Luo,et al.  Synthesis, structure, and properties of polyimide and polyurethane‐urea‐imide copolymers , 2004 .

[137]  H. E. Kissinger Reaction Kinetics in Differential Thermal Analysis , 1957 .

[138]  Su Chen,et al.  Positional assembly of hybrid polyurethane nanocomposites via incorporation of inorganic building blocks into organic polymer , 2004 .

[139]  Philippe Dubois,et al.  New prospects in flame retardant polymer materials: From fundamentals to nanocomposites , 2009 .

[140]  H. Hahm,et al.  Preparation and characteristics of two-component polyurethane flame retardant coatings using 2,3-dibromo modified polyesters , 1996 .

[141]  K. Pielichowski,et al.  Segmented MDI/HMDI‐based polyurethanes with lowered flammability , 2004 .

[142]  Y. Endo,et al.  New synthetic method of 1,2-diaryl-1,2-dicarba-closo-dodecaboranes employing aromatic nucleophilic substitution (SNAr) reaction , 2005 .

[143]  G. Camino,et al.  Thermal behaviour of melamine , 1988 .

[144]  Jung-Hyun Kim,et al.  Crosslinked aqueous dispersion of silylated poly (urethane–urea)/clay nanocomposites , 2007 .

[145]  Chien-Hsin Yang,et al.  Hybrids of colloidal silica and waterborne polyurethane. , 2006, Journal of colloid and interface science.

[146]  Karl Schulte,et al.  Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites , 2003 .

[147]  Z. Petrović,et al.  Thermal stability of segmented polyurethanes , 1976 .

[148]  Tao Zhang,et al.  Synthesis, properties of fullerene-containing polyurethane–urea and its optical limiting absorption , 2003 .

[149]  M. Kitayama,et al.  Synthesis and Properties of Polyoxazolidone Elastomers from Diepoxides and Diisocyanates , 1980 .

[150]  D. Mackerron,et al.  Synthesis of a series of polyurethanes containing phosphorus , 1980 .

[151]  Stuart L. Cooper,et al.  Properties of linear elastomeric polyurethanes , 1966 .

[152]  S. Bourbigot,et al.  Expandable graphite: A fire retardant additive for polyurethane coatings , 2003 .

[153]  Krzysztof Pielichowski,et al.  Thermal degradation of polymeric materials , 2005 .

[154]  S. Duquesne,et al.  A comparative study of the mechanism of action of ammonium polyphosphate and expandable graphite in polyurethane , 2002 .

[155]  Joseph. Green Mechanisms for Flame Retardancy and Smoke suppression -A Review , 1996 .

[156]  H. L. Friedman,et al.  Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic , 2007 .

[157]  F. Farkas,et al.  Thermal stability of polyurethanes , 1988 .

[158]  J. Lubczak N,N′‐diacetylmelamine as a basic material to synthesize polyetherols , 1990 .

[159]  K. Frisch,et al.  Thermostability of Urethane Elastomers Based on p-Phenylene Diisocyanate , 1994 .

[160]  A. Saiani,et al.  Origin of Multiple Melting Endotherms in a High Hard Block Content Polyurethane. 1. Thermodynamic Investigation , 2001 .

[161]  V. Cádiz,et al.  Poly(ether urethane) networks from renewable resources as candidate biomaterials: synthesis and characterization. , 2007, Biomacromolecules.

[162]  K. Kim,et al.  Synthesis and characterizations of waterborne polyurethane–silica hybrids using sol–gel process , 2007 .

[163]  R. N. Walters,et al.  Fire‐resistant elastomers , 2003 .

[164]  Z. Zavargo,et al.  Thermal degradation of segmented polyurethanes , 1994 .

[165]  J. Kresta,et al.  Thermal stability of isocyanate-based polymers. 1. Kinetics of the thermal dissociation of urethane, oxazolidone, and isocyanurate groups , 1981 .

[166]  Z. Brzozowski,et al.  New developments in chemical modification of fire-safe rigid polyurethane foams , 2008 .

[167]  Wenfang Shi,et al.  Thermal behavior and degradation mechanism of poly(bisphenyl acryloxyethyl phosphate) as a UV curable flame-retardant oligomer , 2006 .

[168]  J. Kelly,et al.  Thermal stability of structurally related polymers containing carborane and phthalocyanine groups , 1970 .

[169]  D. Mackerron,et al.  Synthesis and degradation of polyurethanes containing phosphorus—Part II: Thermal degradation of poly(butylene phenylphosphonate) and poly(butylene phenylphosphonate) bis(phenylcarbamate) , 1983 .

[170]  Y. Chen-Yang,et al.  Thermally stable and flame-retardant aromatic phosphate and cyclotriphosphazene-containing polyurethanes: synthesis and properties , 2005 .

[171]  X. Tao,et al.  Self‐Organizing Alignment of Carbon Nanotubes in Thermoplastic Polyurethane , 2005 .

[172]  Wenhui Song,et al.  Microstructure and properties of polyurethane nanocomposites reinforced with methylene-bis-ortho-chloroanilline-grafted multi-walled carbon nanotubes , 2008 .

[173]  T. Yalçınyuva,et al.  A novel type of Si-containing poly(urethane-imide)s: synthesis, characterization and electrical properties , 2005 .

[174]  U. Yilmazer,et al.  Effect of fillers on thermal and mechanical properties of polyurethane elastomer , 1998 .

[175]  Hsu-Chiang Kuan,et al.  Synthesis and characterization of polysilicic acid nanoparticles/waterborne polyurethane nanocomposite , 2005 .

[176]  P. Dubois,et al.  Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials , 2000 .

[177]  M. Ginic-Markovic,et al.  Poly(ethylene glycol)-octafunctionalized polyhedral oligomeric silsesquioxane: synthesis and thermal analysis , 2007 .

[178]  Edward D. Weil,et al.  Thermal decomposition, combustion and fire‐retardancy of polyurethanes—a review of the recent literature , 2004 .

[179]  Tao Zhang,et al.  Synthesis and properties of novel polyurethane-urea/multiwalled carbon nanotube composites , 2006 .

[180]  V. Sendijarevic,et al.  Studies in the formation of poly(oxazolidones). II. Selectivity of catalysts and kinetics in the synthesis of 2-oxazolidone from butyl isocyanate and phenylglycidyl ether , 1987 .

[181]  J. R. Maccallum,et al.  Derivation of Rate Equations used in Thermogravimetry , 1970, Nature.

[182]  J. Lubczak,et al.  Porous polyurethane resins based on products of reaction of ethylene oxide (oxirane) with 1.3,5-tris(hydroxymethyl)isocyanurate , 1985 .

[183]  C. Arfi,et al.  Gases emitted during thermal decomposition of a polypropylene film and a polyurethane adhesive , 1994 .

[184]  M. Delpech,et al.  Degradation profile of films cast from aqueous polyurethane dispersions , 2000 .

[185]  Krzysztof Pielichowski,et al.  Polymer/montmorillonite nanocomposites with improved thermal properties Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement , 2007 .

[186]  P. Budrugeac,et al.  On the Compensation Effect at the Form of the Differential Conversion Function , 1998 .

[187]  G. Scott Degradation and stabilization of polymers , 1969 .

[188]  H. Horacek,et al.  Nitrogen based flame retardants for nitrogen containing polymers , 1993 .

[189]  A. Galwey Is the science of thermal analysis kinetics based on solid foundations?: A literature appraisal , 2004 .

[190]  Joseph. Green 25 Years of Flame Retarding Plastics , 1997 .

[191]  Yunjun Luo,et al.  Synthesis, characterization and properties of a novel fluorinated polyurethane , 2009 .

[192]  T. Takeichi,et al.  Novel method for the preparation of poly(urethane–imide)s and their properties , 1997 .

[193]  Liqing Li,et al.  Thermal stabilities and the thermal degradation kinetics of polyimides , 2004 .

[194]  Y. Shu,et al.  The effect of different siloxane chain-extenders on the thermal degradation and stability of segmented polyurethanes , 2004 .

[195]  M. Delpech,et al.  Degradation profiles of cast films of polyurethane and poly(urethane-urea) aqueous dispersions based on hydroxy-terminated polybutadiene and different diisocyanates , 2003 .

[196]  Alka Gupta,et al.  Aromatic cyclolinear phosphazene polyimides based on a novel bis-spiro-substituted cyclotriphosphazene diamine , 1995 .

[197]  M. Modesti,et al.  Expandable graphite as an intumescent flame retardant in polyisocyanurate-polyurethane foams , 2002 .

[198]  H. Jellinek,et al.  Toxic gas evolution from polymers: Evolution of hydrogen cyanide from linear polyurethane , 1975 .

[199]  Toru Koyama,et al.  Synthesis and viscoelastic properties of new thermosetting resins having isocyanurate and oxazolidone rings in their molecular structures , 1983 .

[200]  Fosong Wang,et al.  Thermal degradation kinetics of poly(propylene carbonate) obtained from the copolymerization of carbon dioxide and propylene oxide , 2003 .

[201]  Yuan Hu,et al.  Study on the properties of flame retardant polyurethane/organoclay nanocomposite , 2005 .

[202]  Wei Liu,et al.  Char-forming mechanism of a novel polymeric flame retardant with char agent , 2007 .

[203]  A. Kettrup,et al.  Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI , 2002 .

[204]  A. I. Balabanovich,et al.  Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites , 2006 .

[205]  Shiro Kobayashi,et al.  Synthesis of phosphorus‐containing polyurethanes without use of isocyanates , 1996 .

[206]  Y. Liu,et al.  Solubilities, thermostabilities and flame retardance behaviour of phosphorus-containing flame retardants and copolymers , 2007 .

[207]  G. Hizal,et al.  Synthesis and characterization of aromatic poly(ether ketone)s containing cyclotriphosphazene units. II , 1998 .

[208]  P. Wadgaonkar,et al.  Synthesis and properties of polyurethanes containing s‐triazine rings in the main chain , 1989 .

[209]  Y. Zhang,et al.  Influence of the composition of rosin-based rigid polyurethane foams on their thermal stability , 1996 .

[210]  P. Kuo,et al.  Flame-retarding materials. II. Synthesis and flame-retarding properties of phosphorus-on-pendent and phosphorus-on-skeleton polyols and the corresponding polyurethanes , 2001 .

[211]  Mark S. Jones,et al.  Chemical modification of polymers to improve flame retardance—I. The influence of boron-containing groups , 1996 .

[212]  Xiaobin Huang,et al.  Synthesis and properties of pentaarmed poly(l-lactide)s on N-dichlorophosphoryl-P-trichlorophosphazene derivative core , 2005 .

[213]  Angela Casu,et al.  Reaction kinetics and morphological changes of a rigid polyurethane foam during combustion , 2003 .

[214]  E. G. Bajsić,et al.  Thermal stability of polyurethane elastomers before and after UV irradiation , 2001 .

[215]  C. P. N. Son,et al.  Color formation in polyurethanes , 1963 .

[216]  J. Vachuška,et al.  Kinetic data computation from non-isothermal thermogravimetric curves of non-uniform heating rate , 1971 .

[217]  G. Gündüz,et al.  Synthesis and characterization of waterborne and phosphorus-containing flame retardant polyurethane coatings , 2003 .

[218]  M. Modesti,et al.  Improvement on fire behaviour of water blown PIR–PUR foams: use of an halogen-free flame retardant , 2003 .

[219]  Lina Zhang,et al.  Structure and Properties of Blend Films Prepared from Castor Oil-Based Polyurethane/Soy Protein Derivative , 2008 .

[220]  R. Sanderson,et al.  Thermogravimetric study of phosphated polyurethane ionomers , 2002 .

[221]  K. Wei,et al.  The effect of nano-sized silicate layers from montmorillonite on glass transition, dynamic mechanical, and thermal degradation properties of segmented polyurethane , 2002 .

[222]  D. Napier,et al.  Toxic products from the combustion and pyrolysis of polyurethane foams , 1972 .

[223]  E. Thomas,et al.  Structure and morphology of segmented polyurethanes: 3. Electron microscopy and small angle X-ray scattering studies of amorphous random segmented polyurethanes , 1986 .

[224]  Jincai Su,et al.  Isothermal and non-isothermal pyrolysis kinetics of Kapton® polyimide , 2006 .

[225]  L. Knothe,et al.  Towards perfunctionalized dodecahedranes--en route to C20 fullerene. , 2006, Chemistry.

[226]  Faxue Li,et al.  Thermal degradation and their kinetics of biodegradable poly(butylene succinate-co-butylene terephthate)s under nitrogen and air atmospheres , 2006 .

[227]  J. Criado,et al.  Thermal decomposition reactions of solids controlled by diffusion and phase-boundary processes: possible misinterpretation of the mechanism from thermogravimetric data , 1977 .

[228]  Ta‐Jo Liu,et al.  Synthesis of organic-inorganic hybrid polymeric nanocomposites for the hard coat application , 2007 .

[229]  H. Horowitz,et al.  A New Analysis of Thermogravimetric Traces. , 1963 .

[230]  L. Avérous,et al.  Polyurethanes Based on Castor Oil: Kinetics, Chemical, Mechanical and Thermal Properties , 2008 .

[231]  S. Vyazovkin,et al.  Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data , 1999 .

[232]  Hsu-Chiang Kuan,et al.  Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite , 2005 .

[233]  M. Modesti,et al.  Flame retardancy of polyisocyanurate-polyurethane foams: use of different charring agents , 2002 .

[234]  V. Sendijarevic,et al.  Studies in the formation of poly(oxazolidone)s. III. Catalysis and kinetics of the model oxazolidone formation from cyclohexyl isocyanate and phenylglycidyl ether , 1989 .

[235]  G. Camino,et al.  Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites , 2006 .

[236]  V. Choudhary,et al.  FLAME RETARDING EPOXIES WITH PHOSPHORUS , 2002 .

[237]  F. Stewart,et al.  Phosphazene monomers from the regiospecific reaction of tert-butylhydroquinone with hexachlorocyclotriphosphazene : A new composite material precursor , 1999 .

[238]  W. D. Woolley Nitrogen‐containing products from the thermal decomposition of flexible polyurethane foams , 1972 .

[239]  T. Chang,et al.  Degradation of phosphorus-containing polyurethanes , 1995 .

[240]  J. Yeh,et al.  Aqueous-based polyurethane with dual-functional curing agent , 2000 .

[241]  D. Yan,et al.  Thermal decomposition kinetics of poly(trimethylene terephthalate) , 2000 .

[242]  H. Allcock,et al.  Polyurethane/poly[bis(carboxylatophenoxy)phosphazene] blends and their potential as flame-retardant materials , 2000 .

[243]  M. Prato,et al.  Carbon-based materials: From fullerene nanostructures to functionalized carbon nanotubes , 2005 .

[244]  B. Adhikari,et al.  Thermal stability of ligninhydroxy-terminated polybutadiene copolyurethanes , 2001 .

[245]  I. Javni,et al.  Rigid polyurethane foams based on soybean oil , 2000 .

[246]  I. Javni,et al.  Thermal stability of polyurethanes based on vegetable oils , 2000 .

[247]  K. Raju,et al.  Structural engineering of polyurethane coatings for high performance applications , 2007 .

[248]  G. Camino,et al.  Catalytic charring–volatilization competition in organoclay nanocomposites , 2007 .

[249]  G. Nando,et al.  Thermal characterization of mica-filled thermoplastic polyurethane composites , 1999 .

[250]  A. Kettrup,et al.  The thermal degradation of a polyurethane foam containing the flame-retardant tetrakis(2-chloroethyl) ethylenediphosphate using simultaneous thermal analysis-mass spectrometry , 1985 .

[251]  W. J. Farrissey,et al.  Preparation of a polyimide foam , 1970 .

[252]  Li-Huei Lin,et al.  Waterborne Polyurethane/Clay Nanocomposites: Novel Effects of the Clay and Its Interlayer Ions on the Morphology and Physical and Electrical Properties , 2006 .

[253]  Steve F. A. Acquah,et al.  Polyurea-functionalized multiwalled carbon nanotubes: synthesis, morphology, and Raman spectroscopy. , 2005, The journal of physical chemistry. B.

[254]  C. R. Desper,et al.  Multiphase Structure of a Segmented Polyurethane: Effects of Temperature and Annealing, , 1992 .

[255]  I. Hamerton,et al.  RECENT DEVELOPMENTS IN THE CHEMISTRY OF HALOGEN-FREE FLAME RETARDANT POLYMERS , 2002 .

[256]  E. Dyer,et al.  Thermal Degradation of Alkyl N-Phenylcarbamates , 1959 .

[257]  B. S. Manjunath,et al.  Effect of Expandable Graphite on the Properties of Intumescent Flame-Retardant Polyurethane Foam , 2008 .

[258]  Xinling Wang,et al.  Fabrication and distribution characteristics of polyurethane/single-walled carbon nanotube composite with anisotropic structure , 2006 .

[259]  I. N. Einhorn,et al.  Pyrolsis of a flexible urethane foam , 1975 .

[260]  Hsu-Chiang Kuan,et al.  Synthesis and characterization of a clay/waterborne polyurethane nanocomposite , 2005 .

[261]  D. Mathew,et al.  Phosphazene–triazine cyclomatrix network polymers: some aspects of synthesis, thermal‐ and flame‐retardant characteristics , 2000 .

[262]  M. Hannaby,et al.  Combustion Modified Moulded Polyurethane Flexible Foam for the Furniture Industry , 1991 .

[263]  Hassan Mahfuz,et al.  Fabrication, synthesis and mechanical characterization of nanoparticles infused polyurethane foams , 2004 .

[264]  J. Gallo,et al.  Flame retardancy in thermoplastic polyurethane elastomers (TPU) with mica and aluminum trihydrate (ATH) , 2000 .

[265]  S. Foti,et al.  Mechanism of thermal degradation of polyurethanes investigated by direct pyrolysis in the mass spectrometer , 1980 .

[266]  Rui Huang,et al.  Properties and microstructure of expandable graphite particles pulverized with an ultra-high-speed mixer , 2006 .

[267]  K. Raju,et al.  Synthesis and characterization of hyperbranched polyurethane–urea coatings , 2007 .

[268]  T. Ozawa A New Method of Analyzing Thermogravimetric Data , 1965 .

[269]  Charles Q. Yang,et al.  Comparison of different reactive organophosphorus flame retardant agents for cotton. Part II: Fabric flame resistant performance and physical properties , 2007 .

[270]  D. V. Krevelen,et al.  Some basic aspects of flame resistance of polymeric materials , 1975 .

[271]  Zoran S. Petrović,et al.  Polyurethanes from Vegetable Oils , 2008 .

[272]  J. A. Conesa,et al.  Comments on the validity and utility of the different methods for kinetic analysis of thermogravimetric data , 2001 .

[273]  R. Jaeger Poly(organophosphazene)s and related compounds: Synthesis, properties and applications , 1998 .

[274]  M. Galià,et al.  Silicon-containing flame retardant epoxy resins: Synthesis, characterization and properties , 2006 .

[275]  J. Yeh,et al.  Flame retardation improvement of aqueous-based polyurethane with aziridinyl phosphazene curing system , 2001 .

[276]  V. Gramlich,et al.  SYNTHESES OF CHIRAL CYCLOTRIPHOSPHAZENES AND THEIR USE IN CYCLOLINEAR POLYMERS , 1999 .

[277]  Roberta Bertani,et al.  On the Preparation and Characterization of Polyethylene/Polyamide Blends by Melt Processing in the Presence of an Ethylene/Acrylic Acid Copolymer and of New Phosphazene Compounds , 2006 .

[278]  M. Boyce,et al.  Stress–strain behavior of thermoplastic polyurethanes , 2005 .

[279]  Dennis Price,et al.  The Burning Behaviour of Combustion Modified High Resilience Polyurethane Foams , 1992 .

[280]  W. Schnick,et al.  New light on an old story: formation of melam during thermal condensation of melamine. , 2007, Chemistry.

[281]  M. A. Fox,et al.  Model compounds and monomers for phenylene ether carboranylene ketone (PECK) polymer synthesis: preparation and characterization of boron-arylated ortho-carboranes bearing carboxyphenyl, phenoxyphenyl or benzoylphenyl substituents , 2002 .

[282]  S. Mehdipour‐Ataei,et al.  Synthesis and characterization of novel diimide–dinaphthols and resulting poly(urethane–imide)s , 2003 .

[283]  Sung Chul Kim,et al.  Synthesis of chain-extended organifier and properties of polyurethane/clay nanocomposites , 2004 .

[284]  W. L. Chang Decomposition Behavior of Polyurethanes via Mathematical Simulation , 1994 .

[285]  T. Chang,et al.  Synthesis and characterization of phosphorus-containing polyurethanes , 1994 .

[286]  C. L. Wang,et al.  Morphology of polyurethane–isocyanurate elastomers , 1985 .

[287]  C. Wesdemiotis,et al.  MALDI-MS analysis of pyrolysis products from a segmented polyurethane , 1998 .

[288]  Hoi-Shan Chan,et al.  Synthesis and Structural Characterization of Hydroxyethyl- and Alkoxyethyl-o-Carboranes and Their Alkali and Rare Earth Metal Complexes , 2004 .

[289]  Wei Zhang,et al.  Soybean-Oil-Based Polyisocyanurate Rigid Foams , 2004 .

[290]  Sibdas Singha Mahapatra,et al.  s-Triazine containing flame retardant hyperbranched polyamines: Synthesis, characterization and properties evaluation , 2007 .

[291]  N. Sahoo,et al.  Effect of Functionalized Carbon Nanotubes on Molecular Interaction and Properties of Polyurethane Composites , 2006 .

[292]  Der-Jang Liaw,et al.  The relative physical and thermal properties of polyurethane elastomers: Effect of chain extenders of bisphenols, diisocyanate, and polyol structures , 1997 .

[293]  Ivan Javni,et al.  Thermal and mechanical properties of glass reinforced soy-based polyurethane composites , 2005 .

[294]  Matthew F. Bundy,et al.  Cone calorimeter analysis of UL‐94 V‐rated plastics , 2007 .

[295]  C. Kuo,et al.  Polyhydroxylated C60 Cross-Linked Polyurethanes , 1995 .

[296]  H. Yeganeh,et al.  Synthesis, Characterization and Properties of Novel Poly(urethane-imide) Networks as Electrical Insulators with Improved Thermal Stability , 2006 .

[297]  Lina Zhang,et al.  Effects of hard‐segment compositions on properties of polyurethane–nitrolignin films , 2001 .

[298]  C. Lin,et al.  Properties and curing kinetic of diglycidyl ether of bisphenol A cured with a phosphorus‐containing diamine , 1999 .

[299]  I. C. Mcneill,et al.  Thermal degradation of allyl methacrylate-methyl methacrylate copolymers , 1997 .

[300]  Q. Jia,et al.  Characterization and properties of sepiolite/polyurethane nanocomposites , 2007 .

[301]  Junwei Gu,et al.  Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings , 2007 .

[302]  K. Frisch,et al.  Thermal stability of isocyanate-based polymers. 2. Kinetics of the thermal dissociation of model urethane, oxazolidone, and isocyanurate block copolymers , 1987 .

[303]  A. W. Coats,et al.  Kinetic Parameters from Thermogravimetric Data , 1964, Nature.

[304]  T. L. Yu,et al.  Effect of isocyanates on the crystallinity and thermal stability of polyurethanes , 1996 .

[305]  F. Chuang,et al.  Analysis of thermal degradation of diacetylene-containing polyurethane copolymers , 2007 .

[306]  I. Yilgor,et al.  Polysiloxane containing copolymers: A survey of recent developments , 1988 .

[307]  S. Vyazovkin Model-free kinetics , 2006 .

[308]  S. Das,et al.  Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments , 2008 .

[309]  Ying‐Ling Liu,et al.  Phosphorus-containing epoxy for flame retardant. III: Using phosphorylated diamines as curing agents , 1997 .

[310]  Lei Song,et al.  Preparation and thermal properties of a novel flame-retardant coating , 2007 .

[311]  Kan-Nan Chen,et al.  Introduction of covalently bonded phosphorus into aqueous-based polyurethane system via postcuring reaction , 1999 .

[312]  J. Andresen,et al.  Thermal degradation behavior of rigid polyurethane foams prepared with different fire retardant concentrations and blowing agents , 2002 .

[313]  R. Lyon Pyrolysis kinetics of char forming polymers , 1998 .

[314]  Soybean oil based polyisocyanurate cast resins , 2003 .

[315]  Gerald Scott,et al.  Polymer Degradation and Stabilisation , 1988 .

[316]  José A. Caballero,et al.  Pyrolysis study of polyurethane , 2001 .

[317]  E. Pearce,et al.  Flexible polyurethane foam. II. Fire retardation by tris(1,3-dichloro-2-propyl) phosphate. Part B. Examination of the condensed phase (the pyrolysis zone) , 1998 .

[318]  I. Dez,et al.  New heat-resistant polyurethanes prepared from hydroxylated cyclotriphosphazenes , 1999 .

[319]  P. Wadgaonkar,et al.  Synthesis and characterization of imide containing diisocyanates and poly(imide-urethane)s therefrom , 1990 .

[320]  R. Lattimer,et al.  Pyrolysis tandem mass spectrometry (Py-MS/MS) of a segmented polyurethane , 1990 .

[321]  R. Boomishankar,et al.  Recent developments in the synthesis and structure of organosilanols. , 2004, Chemical reviews.

[322]  J. Vantelon,et al.  Mechanism of thermal degradation of polyurethane based on MDI and propoxylated trimethylol propane , 1982 .

[323]  K. Heide,et al.  Die bestimmung kinetischer parameter endothermer zersetzungsreaktionen unter nicht-isothermen bedingungen , 1975 .

[324]  I. Dez,et al.  Organic-inorganic polymers: Synthesis and characterization of cyclophosphazene-substituted polyurethanes , 1996 .

[325]  D. Ma,et al.  Study on synthesis and thermal properties of polyurethane–imide copolymers with multiple hard segments , 2002 .

[326]  B. Sreedhar,et al.  Thermal and viscoelastic properties of polyurethane-imide/clay hybrid coatings , 2006 .

[327]  Sophie Duquesne,et al.  Mechanism of fire retardancy of polyurethanes using ammonium polyphosphate , 2001 .

[328]  Ana M. Torró-Palau,et al.  Characterization of waterborne polyurethane adhesives containing different amounts of ionic groups , 2005 .

[329]  S. Oprea Effect of structure on the thermal stability of curable polyester urethane urea acrylates , 2002 .

[330]  D. Liaw,et al.  Phosphorus-containing polyurethanes based on bisphenol-S, prepared by N-alkylation , 1996 .

[331]  E. Pearce,et al.  Flexible polyurethane foam. I. Thermal decomposition of a polyether‐based, water‐blown commercial type of flexible polyurethane foam , 1997 .

[332]  M. Prato,et al.  Medicinal chemistry with fullerenes and fullerene derivatives , 1999 .

[333]  I. Gebefügi,et al.  Investigation of thermal degradation of some adhesives used in the automobile industry by thermal analysis/mass spectrometry and GC-MS , 1995 .

[334]  M. Gleria,et al.  Aspects of Phosphazene Research , 2001 .

[335]  M. Modesti,et al.  Halogen-free flame retardants for polymeric foams , 2002 .

[336]  J. Yeh,et al.  Curing and combustion properties of a PU‐coating system with UV‐reactive phosphazene , 2002 .

[337]  K. Pielichowski,et al.  Thermal decomposition of bisphenol A-based polyetherurethanes blown with pentane: Part I—Thermal and pyrolytical studies , 2006 .

[338]  SYNTHESIS AND CHARACTERIZATION OF CYCLOALIPHATIC AND AROMATIC POLYESTER/POLY(DIMETHYLSILOXANE) SEGMENTED COPOLYMERS , 1997 .

[339]  Daniela Włodarczak Studies of temperature and atmosphere composition influence on thermal degradation products of polyurethane foam , 1988 .

[340]  J. Yeh,et al.  Thermal and combustion behaviors of aqueous-based polyurethane system with phosphorus and nitrogen containing curing agent , 1999 .

[341]  J. Criado,et al.  Some considerations regarding the determination of the activation energy of solid-state reactions from a series of isothermal data , 1984 .

[342]  A. P. Petrova Polyurethane adhesives based on carborane-containing compounds , 2007 .

[343]  T. Chang,et al.  Thermo-oxidative degradation of phosphorus-containing polyurethane , 1995 .

[344]  C. Eisenbach,et al.  Synthesis and thermal stability of oligourethanes based on the cycloaliphatic diisocyanate trans,trans‐4,4′‐methylenebis(cyclohexylisocyanate) , 1996 .

[345]  T. Agag,et al.  Polybenzoxazine/clay hybrid nanocomposites: influence of preparation method on the curing behavior and properties of polybenzoxazines , 2002 .

[346]  Yongshang Lu,et al.  Soybean-oil-based waterborne polyurethane dispersions: effects of polyol functionality and hard segment content on properties. , 2008, Biomacromolecules.

[347]  Hong Huang,et al.  A degradation study of waterborne polyurethane based on TDI , 2009 .

[348]  Xinling Wang,et al.  Reinforcement of polyurethane composites with an organically modified montmorillonite , 2007 .

[349]  A. Asif,et al.  Physical and thermal properties of UV curable waterborne polyurethane dispersions incorporating hyperbranched aliphatic polyester of varying generation number , 2005 .

[350]  H. Yeganeh,et al.  Synthesis and properties of novel thermoplastic poly(urethane-imide)s , 2000 .

[351]  Xinling Wang,et al.  Synthesis and characterization of poly(imide‐urethane) based on novel chain‐extender containing both imide and sulphone functions , 2005 .

[352]  M. Barikani,et al.  Isocyanurate crosslinking as a means of producing thermally stable polyurethane elastomers , 1986 .

[353]  S. Bourbigot,et al.  Thermal oxidative degradation of epoxy resins: evaluation of their heat resistance using invariant kinetic parameters , 1994 .

[354]  Limin Wu,et al.  Preparation and Characterization of Polyurethane Hybrids from Reactive Polyhedral Oligomeric Silsesquioxanes , 2006 .

[355]  K. Frisch,et al.  Modified Isocyanurate Foams. II , 1972 .

[356]  J. Lubczak,et al.  Polyurethane Foams of Improved Thermal Stability , 2002 .

[357]  C. Snape,et al.  Solid state 13C and in situ 1H NMR study on the effect of melamine on the thermal degradation of a flexible polyurethane foam , 2000 .

[358]  Zhengmao Zhou,et al.  An investigation of the thermal degradation of melamine phosphonite by XPS and thermal analysis techniques , 1995 .

[359]  A. H. Navarchian,et al.  Effects of NCO/OH ratio and catalyst concentration on structure, thermal stability, and crosslink density of poly(urethane-isocyanurate) , 2003 .

[360]  Y. Hsieh,et al.  Chlorine degradation of polyether‐based polyurethane , 1997 .

[361]  B. Sreedhar,et al.  Influence of varying hard segments on the properties of chemically crosslinked moisture‐cured polyurethane‐urea , 2006 .

[362]  Y. Shu,et al.  Effect of silicon and phosphorus on the degradation of polyurethanes , 2001 .

[363]  Limin Wu,et al.  Interaction and Microstructure of Polyurethane/Silica Hybrid Films Prepared by Sol-Gel Process , 2006 .