Relativistic models of nonlinear quantum mechanics

I present and discuss a class of nonlinear quantum-theory models, based on simple relativistic field theories, in which the parameters depend on the state of the system via expectation values of local functions of the fields.

[1]  T. Kibble,et al.  Mutual Refraction of Electrons and Photons , 1966 .

[2]  P. C. Zabey Reconstruction theorems in quantum mechanics , 1975 .

[3]  L. Ballentine,et al.  A Survey of Hidden‐Variables Theories , 1974 .

[4]  John T. Lewis,et al.  An operational approach to quantum probability , 1970 .

[5]  R. Haag,et al.  An Algebraic Approach to Quantum Field Theory , 1964 .

[6]  R. Morrow,et al.  Foundations of Quantum Mechanics , 1968 .

[7]  I. Bialynicki-Birula,et al.  Nonlinear Wave Mechanics , 1976 .

[8]  G. Faraci,et al.  An experimental test of the EPR paradox , 1974 .

[9]  J. Gunson On the algebraic structure of quantum mechanics , 1967 .

[10]  C. M. Edwards,et al.  The operational approach to algebraic quantum theory I , 1970 .

[11]  L. Broglie,et al.  Nonlinear Wave Mechanics , 1960 .

[12]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[13]  J. Schwinger COMMUTATION RELATIONS AND CONSERVATION LAWS , 1963 .

[14]  G. Ludwig,et al.  Deutung des Begriffs "physikalische Theorie" und axiomatische Grundlegung der Hilbertraumstruktur der Quantenmechanik durch Hauptsätze des Messens , 1970 .

[15]  B. Mielnik Generalized quantum mechanics , 1974 .

[16]  R. Penrose The nonlinear graviton , 1976 .

[17]  R. Haag,et al.  Comments on Mielnik's generalized (non linear) quantum mechanics , 1978 .

[18]  A. R. Marlow,et al.  Mathematical foundations of quantum theory , 1978 .

[19]  C. Piron,et al.  On the Foundations of Quantum Physics , 1976 .

[20]  Matison,et al.  Experimental Test of Local Hidden-Variable Theories , 1972 .