Dipole Vectors in Images Processing

Instead of evaluating the gradient field of the brightness map of an image, we propose the use of dipole vectors. This approach is obtained by adapting to the image gray-tone distribution the definition of the dipole moment of charge distributions. We will show how to evaluate the dipoles and obtain a vector field, which can be a good alternative to the gradient field in pattern recognition.

[1]  Berthold K. P. Horn,et al.  Determining lightness from an image , 1974, Comput. Graph. Image Process..

[2]  Joshua Gluckman,et al.  Gradient field distributions for the registration of images , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[3]  Bartolomeo Montrucchio,et al.  Vector field visualization with streamlines , 2006, ArXiv.

[4]  Rama Chellappa,et al.  Edge Suppression by Gradient Field Transformation Using Cross-Projection Tensors , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[5]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[6]  Andrea Sanna,et al.  Streamline Image Analysis: a new tool for investigating defects in nematic liquid crystals , 1999 .

[7]  Berthold K. P. Horn Height and gradient from shading , 1989, International Journal of Computer Vision.

[8]  Dani Lischinski,et al.  Gradient Domain High Dynamic Range Compression , 2023 .

[9]  Amelia Carolina Sparavigna Dipole and Quadrupole Moments in Image Processing , 2009, ArXiv.

[10]  K. Hohn,et al.  Determining Lightness from an Image , 2004 .