Theoretical and Experimental Study of Hydrocyclone Performance and Equivalent Settling Area

Predicting the performance of a solid-liquid separation process can help in comparing different separators for selection and design. This can be applied to hydrocyclone technology which is used widely in industry due to being an inexpensive device that is easy to operate and maintain and which has no moving parts. Environmental concerns and technological issues in separation processes are motivating the design of higher efficiency systems with less capital and operating costs. There is a need therefore for, methods to compare different separation technologies.In spite of extensive research into hydrocyclone performance, a mathematical model that can predict the performance of a hydrocyclone for comparison with other centrifugal separators is rare in the literature. The main objective of this research is to apply theoretical and experimental approaches to study hydrocyclone performance in order to propose an applicable separation performance model that represents the whole hydrocyclone operating range. A mathematical model is developed to explore the performance of the separator and to predict the hydrocyclone’s equivalent area as compared to a continuous gravity settling tank. A performance chart that can be used for selection and design of hydrocyclones is the result of the model.Copyright © 2014 by ASME