A Constrained Interval-Valued Linear Regression Model: A New Heteroscedasticity Estimation Method

Linear regression models for interval-valued data have been widely studied. Most literatures are to split an interval into two real numbers, i.e., the left- and right-endpoints or the center and radius of this interval, and fit two separate real-valued or two dimension linear regression models. This paper is focused on the bias-corrected and heteroscedasticity-adjusted modeling by imposing order constraint to the endpoints of the response interval and weighted linear least squares with estimated covariance matrix, based on a generalized linear model for interval-valued data. A three step estimation method is proposed. Theoretical conclusions and numerical evaluations show that the proposed estimator has higher efficiency than previous estimators.

[1]  Yan Sun Linear regression with interval‐valued data , 2016 .

[2]  J. Heckman Dummy Endogenous Variables in a Simultaneous Equation System , 1977 .

[3]  G. González-Rivera,et al.  Constrained Regression for Interval-Valued Data , 2013 .

[4]  Gil González-Rodríguez,et al.  Estimation of a flexible simple linear model for interval data based on set arithmetic , 2011, Comput. Stat. Data Anal..

[5]  Francisco Cribari‐Neto,et al.  A sequence of improved standard errors under heteroskedasticity of unknown form , 2011 .

[6]  Yukio Ogura,et al.  Convergence of set-valued and fuzzy-valued martingales , 1999, Fuzzy Sets Syst..

[7]  R. Aumann INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .

[8]  Yukio Ogura,et al.  Convergence of set valued sub- and supermartingales in the Kuratowski-Mosco sense , 1998 .

[9]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[10]  Junjie Wu,et al.  Linear regression of interval-valued data based on complete information in hypercubes , 2012 .

[11]  Dan A. Ralescu,et al.  Strong Law of Large Numbers for Banach Space Valued Random Sets , 1983 .

[12]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[13]  V. Kreinovich,et al.  Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables , 2002 .

[14]  L. Billard,et al.  Symbolic Regression Analysis , 2002 .

[15]  G. Baikunth Nath MOMENTS OF A LINEARLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION1 , 1972 .

[16]  R. A. Vitale Lp metrics for compact, convex sets , 1985 .

[17]  Francisco de A. T. de Carvalho,et al.  Centre and Range method for fitting a linear regression model to symbolic interval data , 2008, Comput. Stat. Data Anal..

[18]  Thierry Denoeux,et al.  Constrained interval-valued linear regression model , 2017, 2017 20th International Conference on Information Fusion (Fusion).

[19]  Ana Colubi,et al.  Testing linear independence in linear models with interval-valued data , 2007, Comput. Stat. Data Anal..

[20]  Junjie Wu,et al.  CIPCA: Complete-Information-based Principal Component Analysis for interval-valued data , 2012, Neurocomputing.

[21]  Shoumei Li,et al.  Set-valued and interval-valued stationary time series , 2016, J. Multivar. Anal..

[22]  Takeshi Amemiya,et al.  Regression Analysis when the Dependent Variable is Truncated Normal , 1973 .

[23]  J. Heckman Sample selection bias as a specification error , 1979 .

[24]  Berlin Wu,et al.  Evaluating forecasting performance for interval data , 2008, Comput. Math. Appl..

[25]  J. Heckman The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models , 1976 .

[26]  Thierry Denoeux,et al.  Interval-Valued Linear Model , 2015, Int. J. Comput. Intell. Syst..

[27]  R. Engle,et al.  A Multiple Indicators Model for Volatility Using Intra-Daily Data , 2003 .

[28]  Shouchuan Hu,et al.  Handbook of multivalued analysis , 1997 .

[29]  L. Billard,et al.  Regression Analysis for Interval-Valued Data , 2000 .

[30]  C. Orme A Note on the Uniqueness of the Maximum Likelihood Estimator in the Truncated Regression Model , 1989 .

[31]  Peng Hao,et al.  Constrained center and range joint model for interval-valued symbolic data regression , 2017, Comput. Stat. Data Anal..

[32]  Francisco de A. T. de Carvalho,et al.  Constrained linear regression models for symbolic interval-valued variables , 2010, Comput. Stat. Data Anal..

[33]  Renata M. C. R. de Souza,et al.  Interval kernel regression , 2014, Neurocomputing.

[34]  Telmo de Menezes e Silva Filho,et al.  A parametrized approach for linear regression of interval data , 2017, Knowl. Based Syst..

[35]  M. Gil,et al.  Least squares fitting of an affine function and strength of association for interval-valued data , 2002 .