A Constrained Interval-Valued Linear Regression Model: A New Heteroscedasticity Estimation Method
暂无分享,去创建一个
[1] Yan Sun. Linear regression with interval‐valued data , 2016 .
[2] J. Heckman. Dummy Endogenous Variables in a Simultaneous Equation System , 1977 .
[3] G. González-Rivera,et al. Constrained Regression for Interval-Valued Data , 2013 .
[4] Gil González-Rodríguez,et al. Estimation of a flexible simple linear model for interval data based on set arithmetic , 2011, Comput. Stat. Data Anal..
[5] Francisco Cribari‐Neto,et al. A sequence of improved standard errors under heteroskedasticity of unknown form , 2011 .
[6] Yukio Ogura,et al. Convergence of set-valued and fuzzy-valued martingales , 1999, Fuzzy Sets Syst..
[7] R. Aumann. INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .
[8] Yukio Ogura,et al. Convergence of set valued sub- and supermartingales in the Kuratowski-Mosco sense , 1998 .
[9] A. V. D. Vaart,et al. Asymptotic Statistics: Frontmatter , 1998 .
[10] Junjie Wu,et al. Linear regression of interval-valued data based on complete information in hypercubes , 2012 .
[11] Dan A. Ralescu,et al. Strong Law of Large Numbers for Banach Space Valued Random Sets , 1983 .
[12] C. Lawson,et al. Solving least squares problems , 1976, Classics in applied mathematics.
[13] V. Kreinovich,et al. Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables , 2002 .
[14] L. Billard,et al. Symbolic Regression Analysis , 2002 .
[15] G. Baikunth Nath. MOMENTS OF A LINEARLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION1 , 1972 .
[16] R. A. Vitale. Lp metrics for compact, convex sets , 1985 .
[17] Francisco de A. T. de Carvalho,et al. Centre and Range method for fitting a linear regression model to symbolic interval data , 2008, Comput. Stat. Data Anal..
[18] Thierry Denoeux,et al. Constrained interval-valued linear regression model , 2017, 2017 20th International Conference on Information Fusion (Fusion).
[19] Ana Colubi,et al. Testing linear independence in linear models with interval-valued data , 2007, Comput. Stat. Data Anal..
[20] Junjie Wu,et al. CIPCA: Complete-Information-based Principal Component Analysis for interval-valued data , 2012, Neurocomputing.
[21] Shoumei Li,et al. Set-valued and interval-valued stationary time series , 2016, J. Multivar. Anal..
[22] Takeshi Amemiya,et al. Regression Analysis when the Dependent Variable is Truncated Normal , 1973 .
[23] J. Heckman. Sample selection bias as a specification error , 1979 .
[24] Berlin Wu,et al. Evaluating forecasting performance for interval data , 2008, Comput. Math. Appl..
[25] J. Heckman. The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models , 1976 .
[26] Thierry Denoeux,et al. Interval-Valued Linear Model , 2015, Int. J. Comput. Intell. Syst..
[27] R. Engle,et al. A Multiple Indicators Model for Volatility Using Intra-Daily Data , 2003 .
[28] Shouchuan Hu,et al. Handbook of multivalued analysis , 1997 .
[29] L. Billard,et al. Regression Analysis for Interval-Valued Data , 2000 .
[30] C. Orme. A Note on the Uniqueness of the Maximum Likelihood Estimator in the Truncated Regression Model , 1989 .
[31] Peng Hao,et al. Constrained center and range joint model for interval-valued symbolic data regression , 2017, Comput. Stat. Data Anal..
[32] Francisco de A. T. de Carvalho,et al. Constrained linear regression models for symbolic interval-valued variables , 2010, Comput. Stat. Data Anal..
[33] Renata M. C. R. de Souza,et al. Interval kernel regression , 2014, Neurocomputing.
[34] Telmo de Menezes e Silva Filho,et al. A parametrized approach for linear regression of interval data , 2017, Knowl. Based Syst..
[35] M. Gil,et al. Least squares fitting of an affine function and strength of association for interval-valued data , 2002 .