AC CONDUCTIVITY OF GRAPHENE: FROM TIGHT-BINDING MODEL TO 2 + 1-DIMENSIONAL QUANTUM ELECTRODYNAMICS

We consider the relationship between the tight-binding Hamiltonian of the two-dimensional honeycomb lattice of carbon atoms with nearest neighbor hopping only and the 2 + 1 dimensional Hamiltonian of quantum electrodynamics, which follows in the continuum limit. We pay particular attention to the symmetries of the free Dirac fermions including spatial inversion, time reversal, charge conjugation and chirality. We illustrate the power of such a mapping by considering the effect of the possible symmetry breaking, which corresponds to the creation of a finite Dirac mass, on various optical properties. In particular, we consider the diagonal AC conductivity with emphasis on how the finite Dirac mass might manifest itself in experiment. The optical sum rules for the diagonal and Hall conductivities are discussed.

[1]  D. Baeriswyl,et al.  Strong Interactions in Low Dimensions , 2004 .

[2]  Riichiro Saito,et al.  Berry's Phase and Absence of Back Scattering in Carbon Nanotubes. , 1998 .

[3]  M. I. Katsnelson,et al.  Graphene: New bridge between condensed matter physics and quantum electrodynamics , 2007, cond-mat/0703374.

[4]  Symmetry of boundary conditions of the Dirac equation for electrons in carbon nanotubes , 2004, cond-mat/0402373.

[5]  M L Sadowski,et al.  Landau level spectroscopy of ultrathin graphite layers. , 2006, Physical review letters.

[6]  Spontaneously broken Lorentz invariance in three-dimensional gauge theories , 1993, hep-th/9308045.

[7]  W. M. Lomer,et al.  The valence bands in two-dimensional graphite , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[8]  P. Kim,et al.  Quantum Hall states near the charge-neutral Dirac point in graphene. , 2007, Physical review letters.

[9]  Superfluid analogies of cosmological phenomena , 2000, gr-qc/0005091.

[10]  I. Herbut Zero-energy states and fragmentation of spin in the easy-plane antiferromagnet on a honeycomb lattice. , 2007, Physical review letters.

[11]  L. Levitov,et al.  Charge and spin transport at the quantum Hall edge of graphene , 2007, 0705.2882.

[12]  L. Ryder,et al.  Quantum Field Theory , 2001, Foundations of Modern Physics.

[13]  D. V. Khveshchenko Magnetic-field-induced insulating behavior in highly oriented pyrolitic graphite. , 2001, Physical review letters.

[14]  E. J. Mele,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[15]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[16]  F. Guinea,et al.  The electronic spectrum of fullerenes from the Dirac equation , 1993 .

[17]  Unconventional Quasiparticle Lifetime in Graphite. , 1996, Physical review letters.

[18]  Spontaneous symmetry breaking and quantum Hall effect in graphene , 2007, cond-mat/0703757.

[19]  V P Gusynin,et al.  Unconventional integer quantum Hall effect in graphene. , 2005, Physical review letters.

[20]  G. Semenoff,et al.  Condensed-Matter Simulation of a Three-Dimensional Anomaly , 1984 .

[21]  Landauer conductance and twisted boundary conditions for Dirac fermions , 2006, cond-mat/0610598.

[22]  O. Vafek,et al.  QED 3 theory of pairing pseudogap in cuprates: From d-wave superconductor to antiferromagnet via an algebraic Fermi liquid , 2002, cond-mat/0203333.

[23]  Coulomb-interacting Dirac fermions in disordered graphene , 2006, cond-mat/0604180.

[24]  Collective modes and skyrmion excitations in graphene SU"4… quantum Hall ferromagnets , 2006, cond-mat/0605666.

[25]  V. P. Gusynin,et al.  Transport of Dirac quasiparticles in graphene: Hall and optical conductivities , 2006 .

[26]  T. Ando,et al.  Dynamical Conductivity and Zero-Mode Anomaly in Honeycomb Lattices , 2002 .

[27]  A. Calogeracos Paradox in a pencil , 2006 .

[28]  Tsuneya Ando,et al.  Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice. , 2002, Physical review letters.

[29]  Francisco Guinea,et al.  Existence and topological stability of Fermi points in multilayered graphene , 2007 .

[30]  Schakel Relativistic quantum Hall effect. , 1991, Physical review. D, Particles and fields.

[31]  D. V. Khveshchenko,et al.  Excitonic pairing between nodal fermions , 2005, cond-mat/0510519.

[32]  Tsuneya Ando,et al.  Theory of Electronic States and Transport in Carbon Nanotubes , 2005 .

[33]  I. Herbut,et al.  Interactions and phase transitions on graphene's honeycomb lattice. , 2006, Physical review letters.

[34]  J'ozsef Cserti,et al.  Unified description of Zitterbewegung for spintronic, graphene, and superconducting systems , 2006 .

[35]  L. Benfatto,et al.  Optical-conductivity sum rule in cuprates and unconventional charge density waves: a short review , 2005, cond-mat/0508695.

[36]  Magnetotransport and thermoelectricity in Landau-quantized disordered graphene , 2007, cond-mat/0701714.

[37]  E. Dagotto,et al.  Anomalous currents, induced charge and bound states on a domain wall of a semiconductor , 1987 .

[38]  Topological aspects of graphene , 2007, cond-mat/0701431.

[39]  K. Novoselov,et al.  Cyclotron resonance study of the electron and hole velocity in graphene monolayers , 2007, 0704.0410.

[40]  M. Fisher,et al.  Graphene integer quantum Hall effect in the ferromagnetic and paramagnetic regimes , 2006, cond-mat/0604601.

[41]  Dagotto,et al.  Physical realization of the parity anomaly in condensed matter physics. , 1986, Physical review letters.

[42]  D. V. Khveshchenko Ghost excitonic insulator transition in layered graphite. , 2001, Physical review letters.

[43]  V. A. Miransky,et al.  Catalysis of Dynamical Flavor Symmetry Breaking by a Magnetic Field in 2+1 Dimensions. , 1994, Physical review letters.

[44]  Gusynin,et al.  Dynamical flavor symmetry breaking by a magnetic field in 2+1 dimensions. , 1995, Physical review. D, Particles and fields.

[45]  V. Gusynin,et al.  Anomalous absorption line in the magneto-optical response of graphene. , 2006, Physical review letters.

[46]  Quantum Phase Transitions from Topology in Momentum Space , 2006, cond-mat/0601372.

[47]  E. J. Mele,et al.  Quantum spin Hall effect in graphene. , 2004, Physical review letters.

[48]  Magnetic oscillations in planar systems with the Dirac-like spectrum of quasiparticle excitations. II. Transport properties , 2004, cond-mat/0411381.

[49]  Christopher Mudry,et al.  Electron fractionalization in two-dimensional graphenelike structures. , 2006, Physical review letters.

[50]  David P. DiVincenzo,et al.  Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds , 1984 .

[51]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[52]  Jeroen van den Brink,et al.  Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations , 2007 .

[53]  佐藤 光,et al.  C. Itzykson and J. Zuber: Quantum Field Theory, McGraw-Hill, New York, 1980, 705ぺージ, 24×17cm, 18,870円. , 1981 .

[54]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[55]  Tsuneya Ando,et al.  Hall conductivity of a two-dimensional graphite system , 2002 .

[56]  N. M. R. Peres,et al.  Electronic properties of disordered two-dimensional carbon , 2006 .

[57]  Anderson transition in systems with chiral symmetry , 2006, cond-mat/0602331.

[58]  H. Beck,et al.  Magnetic oscillations in planar systems with the Dirac-like spectrum of quasiparticle excitations , 2003, cond-mat/0411381.

[59]  F. Guinea,et al.  Marginal-Fermi-liquid behavior from two-dimensional Coulomb interaction , 1998, cond-mat/9807130.

[60]  Excitations from filled Landau levels in graphene , 2006, cond-mat/0608364.

[61]  Optical Sum Rule in Finite Bands , 2006, cond-mat/0608116.

[62]  D. Marel Optical signatures of electron correlations in the cuprates , 2003, cond-mat/0301506.

[63]  Shinsei Ryu,et al.  Topological origin of zero-energy edge states in particle-hole symmetric systems. , 2001, Physical review letters.

[64]  R. Schützhold,et al.  BOOK REVIEW: Quantum Analogues: From Phase Transitions to Black Holes and Cosmology , 2007 .

[65]  S. Liberati Quantum Analogues: From Phase Transitions to Black Holes and Cosmology , 2008 .

[66]  M. Bowick,et al.  Spontaneous chiral-symmetry breaking in three-dimensional QED. , 1986, Physical review. D, Particles and fields.

[67]  C. Berger,et al.  Weak antilocalization in epitaxial graphene: evidence for chiral electrons. , 2006, Physical review letters.

[68]  Vladimir I. Fal'ko,et al.  Selective transmission of Dirac electrons and ballistic magnetoresistance of n − p junctions in graphene , 2006 .

[69]  V. P. Gusynin,et al.  Sum Rules for the Optical and Hall Conductivity in Graphene , 2007 .

[70]  M. I. Katsnelson,et al.  Chiral tunnelling and the Klein paradox in graphene , 2006 .

[71]  V. Gusynin,et al.  Magneto-optical conductivity in graphene , 2007, 0705.3783.

[72]  A. Moyer Physics in Canada , 1991, Nature.

[73]  L. Vandersypen,et al.  Bipolar supercurrent in graphene , 2006, Nature.

[74]  L. Falkovsky,et al.  Space-time dispersion of graphene conductivity , 2006, cond-mat/0606800.

[75]  L. Levitov,et al.  Spin-filtered edge states and quantum Hall effect in graphene. , 2006, Physical Review Letters.

[76]  Vadim V Cheianov,et al.  Friedel oscillations, impurity scattering, and temperature dependence of resistivity in graphene. , 2006, Physical review letters.

[77]  A. Millis Optical conductivity and correlated electron physics , 2004 .

[78]  R. Jackiw,et al.  How super-renormalizable interactions cure their infrared divergences , 1981 .

[79]  A. Mirlin,et al.  Electron transport in disordered graphene , 2006 .

[80]  Magnetic field driven metal insulator phase transition in planar systems , 2002, cond-mat/0202422.

[81]  Jannik C. Meyer,et al.  The structure of suspended graphene sheets , 2007, Nature.

[82]  L. Levitov,et al.  Randomness-induced XY ordering in a graphene quantum hall ferromagnet. , 2007, Physical review letters.

[83]  Infrared probe of the anomalous magnetotransport of highly oriented pyrolytic graphite in the extreme quantum limit , 2006, cond-mat/0611272.

[84]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[85]  B. Binegar Relativistic field theories in three dimensions , 1982 .

[86]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[87]  V P Gusynin,et al.  Unusual microwave response of dirac quasiparticles in graphene. , 2006, Physical review letters.

[88]  D. Melrose,et al.  Quantum Electrodynamics in Strong Magnetic Fields. I. Electron States , 1983 .

[89]  Landau-level splitting in graphene in high magnetic fields. , 2006, Physical review letters.

[90]  C. Berger,et al.  Magnetospectroscopy of epitaxial few-layer graphene , 2007, 0704.0585.

[91]  J. Slonczewski,et al.  Band Structure of Graphite , 1958 .

[92]  P. Kim,et al.  Infrared spectroscopy of Landau levels of graphene. , 2007, Physical Review Letters.

[93]  T. Ebbesen Physical Properties of Carbon Nanotubes , 1997 .

[94]  Steven G. Louie,et al.  Disorder, Pseudospins, and Backscattering in Carbon Nanotubes , 1999 .

[95]  V. A. Miransky,et al.  Dimensional reduction and catalysis of dynamical symmetry breaking by a magnetic field , 1995, hep-ph/9509320.

[96]  Electron-electron interactions in graphene sheets , 2000, cond-mat/0007337.

[97]  Fisher,et al.  Integer quantum Hall transition: An alternative approach and exact results. , 1994, Physical review. B, Condensed matter.

[98]  R. Yahalom,et al.  Physical origin of topological mass in 2 + 1 dimensions , 1986 .

[99]  Non-Fermi liquid behavior of electrons in the half-filled honeycomb lattice (A renormalization group approach) , 1993, hep-th/9311105.

[100]  Theories of low-energy quasi-particle states in disordered d-wave superconductors , 2000, cond-mat/0006362.

[101]  Evidence for internal field in graphite: a conduction electron spin-resonance study , 2001, cond-mat/0106232.

[102]  Composite Dirac fermions in graphene , 2006, cond-mat/0607174.

[103]  U Zeitler,et al.  Room-Temperature Quantum Hall Effect in Graphene , 2007, Science.

[104]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[105]  L. Sheng,et al.  Odd-integer quantum Hall effect in graphene: interaction and disorder effects. , 2007, Physical review letters.

[106]  F. Guinea,et al.  Drawing Conclusions from Graphene , 2006 .

[107]  Kentaro Nomura,et al.  Quantum Hall ferromagnetism in graphene. , 2006, Physical review letters.

[108]  R. Jackiw,et al.  Chiral gauge theory for graphene. , 2007, Physical review letters.

[109]  Haldane,et al.  Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly" , 1988, Physical review letters.

[110]  B L Altshuler,et al.  Weak-localization magnetoresistance and valley symmetry in graphene. , 2006, Physical review letters.

[111]  A. V. Fedorov,et al.  Substrate-induced bandgap opening in epitaxial graphene. , 2007, Nature materials.

[112]  E. Mishchenko Effect of electron-electron interactions on the conductivity of clean graphene. , 2006, Physical review letters.

[113]  Reza Asgari,et al.  Chirality and correlations in graphene. , 2007, Physical review letters.