An efficient parallel immersed boundary algorithm using a pseudo-compressible fluid solver

We propose an efficient algorithm for the immersed boundary method on distributed-memory architectures that has the computational complexity of a completely explicit method and also has excellent parallel scaling. The algorithm utilizes the pseudo-compressibility method recently proposed by Guermond and Minev that uses a directional splitting strategy to discretize the incompressible Navier-Stokes equations, thereby reducing the linear systems to a series of one-dimensional tridiagonal systems. We perform numerical simulations of several fluid-structure interaction problems in two and three dimensions and study the accuracy and convergence rates of the proposed algorithm. We also compare the proposed algorithm with other second-order projection-based fluid solvers. Lastly, the execution time and scaling properties of the proposed algorithm are investigated and compared to alternate approaches.

[1]  P. Moin,et al.  Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow , 1998 .

[2]  William Gropp,et al.  PETSc Users Manual Revision 3.4 , 2016 .

[3]  Robert Michael Kirby,et al.  Unconditionally stable discretizations of the immersed boundary equations , 2007, J. Comput. Phys..

[4]  Héctor D. Ceniceros,et al.  Efficient solutions to robust, semi-implicit discretizations of the immersed boundary method , 2009, J. Comput. Phys..

[5]  B. Wetton,et al.  Analysis of Stiffness in the Immersed Boundary Method and Implications for Time-Stepping Schemes , 1999 .

[6]  Jie Shen On a new pseudocompressibility method for the incompressible Navier-Stokes equations , 1996 .

[7]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[8]  Arvind Santhanakrishnan,et al.  A numerical study of the effects of bell pulsation dynamics and oral arms on the exchange currents generated by the upside-down jellyfish Cassiopea xamachana , 2011, Journal of Experimental Biology.

[9]  Michael L. Minion On the Stability of Godunov-Projection Methods for Incompressible Flow , 1996 .

[10]  Charles S. Peskin,et al.  Improved Volume Conservation in the Computation of Flows with Immersed Elastic Boundaries , 1993 .

[11]  C. Peskin,et al.  Implicit second-order immersed boundary methods with boundary mass , 2008 .

[12]  C. Peskin,et al.  A computational fluid dynamics of `clap and fling' in the smallest insects , 2005, Journal of Experimental Biology.

[13]  Robert M. Kirby,et al.  A Comparison of Implicit Solvers for the Immersed Boundary Equations , 2008 .

[14]  Edward H. Twizell,et al.  Second-order,L0-stable methods for the heat equation with time-dependent boundary conditions , 1996, Adv. Comput. Math..

[15]  Boyce E. Griffith,et al.  An accurate and efficient method for the incompressible Navier-Stokes equations using the projection method as a preconditioner , 2009, J. Comput. Phys..

[16]  Robert D. Falgout,et al.  The Design and Implementation of hypre, a Library of Parallel High Performance Preconditioners , 2006 .

[17]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[18]  M. Lai,et al.  An Immersed Boundary Method with Formal Second-Order Accuracy and Reduced Numerical Viscosity , 2000 .

[19]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[20]  Boyce E. Griffith,et al.  Simulating the blood-muscle-valve mechanics of the heart by an adaptive and parallel version of the immersed boundary method , 2005 .

[21]  Boyce E. Griffith,et al.  On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems , 2005 .

[22]  Katherine A. Yelick,et al.  Distributed Immersed Boundary Simulation in Titanium , 2006, SIAM J. Sci. Comput..

[23]  L. Fauci,et al.  Fluid Dynamic Models of Flagellar and Ciliary Beating , 2007, Annals of the New York Academy of Sciences.

[24]  J. J. Douglas Alternating direction methods for three space variables , 1962 .

[25]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[26]  Boyce E. Griffith,et al.  On the Volume Conservation of the Immersed Boundary Method , 2012 .

[27]  James Demmel,et al.  the Parallel Computing Landscape , 2022 .

[28]  R. Temam Une méthode d'approximation de la solution des équations de Navier-Stokes , 1968 .

[29]  Thomas Y. Hou,et al.  An efficient semi-implicit immersed boundary method for the Navier-Stokes equations , 2008, J. Comput. Phys..

[30]  Michael Pippig PFFT: An Extension of FFTW to Massively Parallel Architectures , 2013, SIAM J. Sci. Comput..

[31]  M. Minion,et al.  Accurate projection methods for the incompressible Navier—Stokes equations , 2001 .

[32]  Ronald Scherer,et al.  Modeling coupled aerodynamics and vocal fold dynamics using immersed boundary methods. , 2006, The Journal of the Acoustical Society of America.

[33]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[34]  Jacob K. White,et al.  An implicit immersed boundary method for three-dimensional fluid-membrane interactions , 2009, J. Comput. Phys..

[35]  Charles S. Peskin,et al.  Validation of a simple method for representing spheres and slender bodies in an immersed boundary method for Stokes flow on an unbounded domain , 2008, J. Comput. Phys..

[36]  Robert D. Falgout,et al.  Scaling Hypre's Multigrid Solvers to 100, 000 Cores , 2011, High-Performance Scientific Computing.

[37]  Abner J. Salgado,et al.  Convergence analysis of a class of massively parallel direction splitting algorithms for the Navier-Stokes equations in simple domains , 2011, Math. Comput..

[38]  Jie Shen,et al.  PSEUDO-COMPRESSIBILITY METHODS FOR THE UNSTEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS , 2007 .

[39]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[40]  Jean-Luc Guermond,et al.  A new class of fractional step techniques for the incompressible Navier–Stokes equations using direction splitting , 2010 .

[41]  Randall J. LeVeque,et al.  An Immersed Interface Method for Incompressible Navier-Stokes Equations , 2003, SIAM J. Sci. Comput..

[42]  Michael Shelley,et al.  Simulating the dynamics and interactions of flexible fibers in Stokes flows , 2004 .

[43]  Peter McCorquodale,et al.  A Cartesian grid embedded boundary method for the heat equation on irregular domains , 2001 .

[44]  Maria Ganzha,et al.  Highly Parallel Alternating Directions Algorithm for Time Dependent Problems , 2011 .

[45]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[46]  Boyce E. Griffith,et al.  Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method , 2009 .

[47]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[48]  Philippe Angot,et al.  A direction splitting algorithm for incompressible flow in complex geometries , 2012 .

[49]  Boyce E. Griffith,et al.  An adaptive, formally second order accurate version of the immersed boundary method , 2007, J. Comput. Phys..

[50]  Peter D. Minev,et al.  Start‐up flow in a three‐dimensional lid‐driven cavity by means of a massively parallel direction splitting algorithm , 2012 .

[51]  B. Wetton,et al.  Analysis and computation of immersed boundaries, with application to pulp fibres , 1997 .

[52]  Steven G. Johnson,et al.  FFTW: an adaptive software architecture for the FFT , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[53]  R. Rannacher On chorin's projection method for the incompressible navier-stokes equations , 1992 .

[54]  George Bosilca,et al.  Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation , 2004, PVM/MPI.

[55]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[56]  Samuel Williams,et al.  The Landscape of Parallel Computing Research: A View from Berkeley , 2006 .

[57]  Jean-Luc Guermond,et al.  A new class of massively parallel direction splitting for the incompressible Navier―Stokes equations , 2011 .

[58]  Boyce E. Griffith,et al.  Parallel and Adaptive Simulation of Cardiac Fluid Dynamics , 2009 .

[59]  Randall J. LeVeque,et al.  Immersed Interface Methods for Stokes Flow with Elastic Boundaries or Surface Tension , 1997, SIAM J. Sci. Comput..