Asymmetric Amination of α‐Chiral Aliphatic Aldehydes via Dynamic Kinetic Resolution to Access Stereocomplementary Brivaracetam and Pregabalin Precursors

[1]  J. Shin,et al.  One-Pot Conversion of L-Threonine into L-Homoalanine: Biocatalytic Production of an Unnatural Amino Acid from a Natural One , 2010 .

[2]  W. Kroutil,et al.  The Industrial Age of Biocatalytic Transamination , 2015, European journal of organic chemistry.

[3]  Hyungdon Yun,et al.  ω-Transaminases for the Production of Optically Pure Amines and Unnatural Amino Acids , 2012 .

[4]  Wolfgang Kroutil,et al.  Vicinal Diamines as Smart Cosubstrates in the Transaminase-Catalyzed Asymmetric Amination of Ketones , 2017 .

[5]  W. Kroutil,et al.  Synthesis of Optically Active Amines Employing Recombinant ω‐Transaminases in E. coli Cells , 2010 .

[6]  M. Hoekstra,et al.  Chemical Development of CI-1008, an Enantiomerically Pure Anticonvulsant , 1997 .

[7]  A. Petit,et al.  Exploiting the Biocatalytic Toolbox for the Asymmetric Synthesis of the Heart-Rate Reducing Agent Ivabradine , 2017 .

[8]  W. Kroutil,et al.  Synthesis of 4-phenylpyrrolidin-2-one via dynamic kinetic resolution catalyzed by ω-transaminases , 2009 .

[9]  G. Guebitz,et al.  Formal asymmetric biocatalytic reductive amination. , 2008, Angewandte Chemie.

[10]  Karen Robins,et al.  Rational assignment of key motifs for function guides in silico enzyme identification. , 2010, Nature chemical biology.

[11]  D. Monti,et al.  Novel thermostable amine transferases from hot spring metagenomes , 2017, Applied Microbiology and Biotechnology.

[12]  R. Silverman,et al.  From basic science to blockbuster drug: the discovery of Lyrica. , 2008, Angewandte Chemie.

[13]  Nicholas J. Turner,et al.  Biocatalytic transamination with near-stoichiometric inexpensive amine donors mediated by bifunctional mono- and di-amine transaminases , 2017 .

[14]  Wolfgang Kroutil,et al.  omega-Transaminases for the synthesis of non-racemic alpha-chiral primary amines. , 2010, Trends in biotechnology.

[15]  J. W. Wong,et al.  Evaluation of Several Routes to Advanced Pregabalin Intermediates: Synthesis and Enantioselective Enzymatic Reduction Using Ene-Reductases , 2014 .

[16]  Per Berglund,et al.  Transaminase biocatalysis: optimization and application , 2017 .

[17]  Paul N. Devine,et al.  Biocatalytic Asymmetric Synthesis of Chiral Amines from Ketones Applied to Sitagliptin Manufacture , 2010, Science.

[18]  K. Faber,et al.  Chemoenzymatic Asymmetric Synthesis of Pregabalin Precursors via Asymmetric Bioreduction of β-Cyanoacrylate Esters Using Ene-Reductases , 2013, The Journal of organic chemistry.

[19]  E. Busto,et al.  Asymmetric Biocatalytic Synthesis of Fluorinated Pyridines through Transesterification or Transamination: Computational Insights into the Reactivity of Transaminases , 2017 .

[20]  M. Martinelle,et al.  One-pot biocatalytic amine transaminase/acyl transferase cascade for aqueous formation of amides from aldehydes or ketones , 2016 .

[21]  E. Hansen,et al.  Development of a concise, asymmetric synthesis of a smoothened receptor (SMO) inhibitor: enzymatic transamination of a 4-piperidinone with dynamic kinetic resolution. , 2014, Organic letters.

[22]  Long Pang,et al.  Case Studies Illustrating a Science and Risk-Based Approach to Ensuring Drug Quality When Using Enzymes in the Manufacture of Active Pharmaceuticals Ingredients for Oral Dosage Form , 2016 .

[23]  A. Skerra,et al.  Amination of Ketones by Employing Two New (S)‐Selective ω‐Transaminases and the His‐Tagged ω‐TA from Vibrio fluvialis , 2012 .

[24]  J. Shin,et al.  ω-Transaminase from Ochrobactrum anthropi Is Devoid of Substrate and Product Inhibitions , 2013, Applied and Environmental Microbiology.

[25]  G. Lin,et al.  Highly enantioselective alkenylation of cyclic α,β-unsaturated carbonyl compounds as catalyzed by a rhodium-diene complex: application to the synthesis of (S)-pregabalin and (-)-α-kainic acid. , 2012, Chemistry.

[26]  F. G. Mutti,et al.  Stereoselectivity of Four (R)‐Selective Transaminases for the Asymmetric Amination of Ketones , 2011 .

[27]  J. Shin,et al.  Features and technical applications of ω-transaminases , 2012, Applied Microbiology and Biotechnology.

[28]  T. Besset,et al.  Dynamic Kinetic Resolution of 2‐Phenylpropanal Derivatives to Yield β‐Chiral Primary Amines via Bioamination , 2014 .

[29]  Matthew D Truppo,et al.  Biocatalysis in the Pharmaceutical Industry: The Need for Speed. , 2017, ACS medicinal chemistry letters.

[30]  Christian C. Gruber,et al.  Optimization of Reaction Parameters and Cultivation Conditions for Biocatalytic Hydrogen Transfer Employing Overexpressed ADH‐‘A’ from Rhodococcus ruber DSM 44541 in E. coli , 2006 .

[31]  H. Hailes,et al.  A metagenomics approach for new biocatalyst discovery: application to transaminases and the synthesis of allylic amines , 2017 .

[32]  Wolfgang Kroutil,et al.  Enzymatic reduction of ketones in "micro-aqueous" media catalyzed by ADH-A from Rhodococcus ruber. , 2007, Organic letters.

[33]  J. Tao,et al.  Cloning and optimization of a nitrilase for the synthesis of (3S)-3-cyano-5-methyl hexanoic acid , 2006 .

[34]  Y. Miao,et al.  Biocatalytic Michael-type additions of acetaldehyde to nitroolefins with the proline-based enzyme 4-oxalocrotonate tautomerase yielding enantioenriched γ-nitroaldehydes. , 2013, Chemistry.

[35]  E. Busto,et al.  Biocatalytic Transamination for the Asymmetric Synthesis of Pyridylalkylamines. Structural and Activity Features in the Reactivity of Transaminases , 2016 .

[36]  K. Gruber,et al.  Structural insights into substrate specificity and solvent tolerance in alcohol dehydrogenase ADH-'A' from Rhodococcus ruber DSM 44541. , 2010, Chemical communications.

[37]  E. Busto,et al.  Cutting Short the Asymmetric Synthesis of the Ramatroban Precursor by Employing ω‐Transaminases , 2014 .

[38]  Junhua Tao,et al.  Development of a Chemoenzymatic Manufacturing Process for Pregabalin , 2008 .

[39]  U. Bornscheuer,et al.  Amine Transaminase Engineering for Spatially Bulky Substrate Acceptance , 2017, Chembiochem : a European journal of chemical biology.

[40]  Per Berglund,et al.  Revealing the Structural Basis of Promiscuous Amine Transaminase Activity , 2013 .

[41]  Elaine O’Reilly,et al.  Transaminase Triggered Aza-Michael Approach for the Enantioselective Synthesis of Piperidine Scaffolds. , 2016, Journal of the American Chemical Society.

[42]  Guy R. Humphrey,et al.  Process Development of C−N Cross-Coupling and Enantioselective Biocatalytic Reactions for the Asymmetric Synthesis of Niraparib , 2014 .

[43]  Ramesh N. Patel Biocatalysis: Synthesis of Key Intermediates for Development of Pharmaceuticals , 2011 .

[44]  C. Martínez,et al.  The Development of a Green, Energy Efficient, Chemoenzymatic Manufacturing Process for Pregabalin , 2010 .

[45]  K. Rissanen,et al.  A Simple Organocatalytic Enantioselective Synthesis of Pregabalin , 2009 .

[46]  J. Bäckvall,et al.  Chemoenzymatic Dynamic Kinetic Resolution: A Powerful Tool for the Preparation of Enantiomerically Pure Alcohols and Amines , 2015, Journal of the American Chemical Society.

[47]  Daniel F. A. R. Dourado,et al.  Rational Design of a (S)-Selective-Transaminase for Asymmetric Synthesis of (1S)-1-(1,1′-biphenyl-2-yl)ethanamine , 2016 .

[48]  Javier González‐Sabín,et al.  Hybrid Organo- and Biocatalytic Process for the Asymmetric Transformation of Alcohols into Amines in Aqueous Medium , 2017 .

[49]  Z. Ge,et al.  Solvent-free organocatalytic Michael addition of diethyl malonate to nitroalkenes: the practical synthesis of Pregabalin and γ-nitrobutyric acid derivatives , 2011 .

[50]  A. Verrotti,et al.  New developments in the management of partial-onset epilepsy: role of brivaracetam , 2017, Drug design, development and therapy.

[51]  W. Kroutil,et al.  Catalytic Promiscuity of Transaminases: Preparation of Enantioenriched β-Fluoroamines by Formal Tandem Hydrodefluorination/Deamination. , 2016, Angewandte Chemie.

[52]  V. Wendisch,et al.  In vivo plug-and-play: a modular multi-enzyme single-cell catalyst for the asymmetric amination of ketoacids and ketones , 2017, Microbial Cell Factories.

[53]  Hyunwoo Jeon,et al.  Biotransformation of β-keto nitriles to chiral (S)-β-amino acids using nitrilase and ω-transaminase , 2017, Biotechnology Letters.

[54]  William Lewis,et al.  A New Generation of Smart Amine Donors for Transaminase-Mediated Biotransformations. , 2016, Chemistry.

[55]  M. Truppo,et al.  A highly efficient asymmetric synthesis of vernakalant. , 2014, Organic letters.

[56]  M. Rogawski Brivaracetam: a rational drug discovery success story , 2008, British journal of pharmacology.

[57]  Christopher John Squire,et al.  Use of ω-Transaminase Enzyme Chemistry in the Synthesis of a JAK2 Kinase Inhibitor , 2013 .

[58]  D. Berkowitz,et al.  Exploiting Enzymatic Dynamic Reductive Kinetic Resolution (DYRKR) in Stereocontrolled Synthesis. , 2015, Advanced synthesis & catalysis.

[59]  M. Nicoletti,et al.  Catalytic asymmetric reductive amination of aldehydes via dynamic kinetic resolution. , 2006, Journal of the American Chemical Society.

[60]  Paul N. Devine,et al.  Convergent Kilogram-Scale Synthesis of Dual Orexin Receptor Antagonist , 2013 .

[61]  Stephen Lau,et al.  CRTH2 antagonist MK-7246: a synthetic evolution from discovery through development. , 2012, The Journal of organic chemistry.

[62]  Hans Iding,et al.  Identification of (S)-selective transaminases for the asymmetric synthesis of bulky chiral amines. , 2016, Nature chemistry.