Heidelberg Retina Tomograph 3 machine learning classifiers for glaucoma detection

Aims: To assess performance of classifiers trained on Heidelberg Retina Tomograph 3 (HRT3) parameters for discriminating between healthy and glaucomatous eyes. Methods: Classifiers were trained using HRT3 parameters from 60 healthy subjects and 140 glaucomatous subjects. The classifiers were trained on all 95 variables and smaller sets created with backward elimination. Seven types of classifiers, including Support Vector Machines with radial basis (SVM-radial), and Recursive Partitioning and Regression Trees (RPART), were trained on the parameters. The area under the ROC curve (AUC) was calculated for classifiers, individual parameters and HRT3 glaucoma probability scores (GPS). Classifier AUCs and leave-one-out accuracy were compared with the highest individual parameter and GPS AUCs and accuracies. Results: The highest AUC and accuracy for an individual parameter were 0.848 and 0.79, for vertical cup/disc ratio (vC/D). For GPS, global GPS performed best with AUC 0.829 and accuracy 0.78. SVM-radial with all parameters showed significant improvement over global GPS and vC/D with AUC 0.916 and accuracy 0.85. RPART with all parameters provided significant improvement over global GPS with AUC 0.899 and significant improvement over global GPS and vC/D with accuracy 0.875. Conclusions: Machine learning classifiers of HRT3 data provide significant enhancement over current methods for detection of glaucoma.

[1]  Mei-Ling Huang,et al.  Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography. , 2005, Investigative ophthalmology & visual science.

[2]  L. Zangwill,et al.  Discriminating between normal and glaucomatous eyes using the Heidelberg Retina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph. , 2001, Archives of ophthalmology.

[3]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[4]  Berthold Lausen,et al.  Improving Glaucoma Diagnosis by the Combination of Perimetry and HRT Measurements , 2006, Journal of glaucoma.

[5]  N. Swindale,et al.  Automated analysis of normal and glaucomatous optic nerve head topography images. , 2000, Investigative ophthalmology & visual science.

[6]  A. Sommer,et al.  Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. , 1991, Archives of ophthalmology.

[7]  J. Jonas,et al.  Interobserver variability of optic disk variables measured by confocal scanning laser tomography. , 2001, American journal of ophthalmology.

[8]  P. Artes,et al.  Automated analysis of heidelberg retina tomograph optic disc images by glaucoma probability score. , 2006, Investigative ophthalmology & visual science.

[9]  Robert N Weinreb,et al.  Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc. , 2002, Investigative ophthalmology & visual science.

[10]  G. Wollstein,et al.  Inter- and intraobserver variation in the analysis of optic disc images: comparison of the Heidelberg retina tomograph and computer assisted planimetry , 1999, The British journal of ophthalmology.

[11]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[12]  T. Sejnowski,et al.  Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. , 2004, Investigative ophthalmology & visual science.

[13]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[14]  Robert N Weinreb,et al.  The effect of disc size and severity of disease on the diagnostic accuracy of the Heidelberg Retina Tomograph Glaucoma Probability Score. , 2007, Investigative ophthalmology & visual science.

[15]  G. Wollstein,et al.  Identification of early glaucoma cases with the scanning laser ophthalmoscope. , 1998, Ophthalmology.

[16]  C. Glymour,et al.  Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study. , 2005, Investigative ophthalmology & visual science.

[17]  A. Ferreras,et al.  Diagnostic ability of Heidelberg Retina Tomograph 3 classifications: glaucoma probability score versus Moorfields regression analysis. , 2007, Ophthalmology.

[18]  G. Wollstein,et al.  Glaucoma detection with the Heidelberg retina tomograph 3. , 2007, Ophthalmology.

[19]  A. Sommer,et al.  The nerve fiber layer in the diagnosis of glaucoma. , 1977, Archives of ophthalmology.

[20]  A. Sommer,et al.  An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. , 1992, Ophthalmology.

[21]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[22]  E. DeLong,et al.  Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. , 1988, Biometrics.

[23]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[24]  G. Mcgwin,et al.  Discrimination between glaucomatous and nonglaucomatous eyes using quantitative imaging devices and subjective optic nerve head assessment. , 2006, Investigative ophthalmology & visual science.