Heidelberg Retina Tomograph 3 machine learning classifiers for glaucoma detection
暂无分享,去创建一个
K. A. Townsend | G. Wollstein | L. Kagemann | H. Ishikawa | M. Gabriele | J. Schuman | L Kagemann | J S Schuman | H Ishikawa | G Wollstein | K A Townsend | D Danks | K R Sung | M L Gabriele | David Danks | Kyung Rim Sung
[1] Mei-Ling Huang,et al. Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography. , 2005, Investigative ophthalmology & visual science.
[2] L. Zangwill,et al. Discriminating between normal and glaucomatous eyes using the Heidelberg Retina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph. , 2001, Archives of ophthalmology.
[3] Eric R. Ziegel,et al. Generalized Linear Models , 2002, Technometrics.
[4] Berthold Lausen,et al. Improving Glaucoma Diagnosis by the Combination of Perimetry and HRT Measurements , 2006, Journal of glaucoma.
[5] N. Swindale,et al. Automated analysis of normal and glaucomatous optic nerve head topography images. , 2000, Investigative ophthalmology & visual science.
[6] A. Sommer,et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. , 1991, Archives of ophthalmology.
[7] J. Jonas,et al. Interobserver variability of optic disk variables measured by confocal scanning laser tomography. , 2001, American journal of ophthalmology.
[8] P. Artes,et al. Automated analysis of heidelberg retina tomograph optic disc images by glaucoma probability score. , 2006, Investigative ophthalmology & visual science.
[9] Robert N Weinreb,et al. Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc. , 2002, Investigative ophthalmology & visual science.
[10] G. Wollstein,et al. Inter- and intraobserver variation in the analysis of optic disc images: comparison of the Heidelberg retina tomograph and computer assisted planimetry , 1999, The British journal of ophthalmology.
[11] R. Fisher. THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .
[12] T. Sejnowski,et al. Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. , 2004, Investigative ophthalmology & visual science.
[13] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[14] Robert N Weinreb,et al. The effect of disc size and severity of disease on the diagnostic accuracy of the Heidelberg Retina Tomograph Glaucoma Probability Score. , 2007, Investigative ophthalmology & visual science.
[15] G. Wollstein,et al. Identification of early glaucoma cases with the scanning laser ophthalmoscope. , 1998, Ophthalmology.
[16] C. Glymour,et al. Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study. , 2005, Investigative ophthalmology & visual science.
[17] A. Ferreras,et al. Diagnostic ability of Heidelberg Retina Tomograph 3 classifications: glaucoma probability score versus Moorfields regression analysis. , 2007, Ophthalmology.
[18] G. Wollstein,et al. Glaucoma detection with the Heidelberg retina tomograph 3. , 2007, Ophthalmology.
[19] A. Sommer,et al. The nerve fiber layer in the diagnosis of glaucoma. , 1977, Archives of ophthalmology.
[20] A. Sommer,et al. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. , 1992, Ophthalmology.
[21] P. McCullagh,et al. Generalized Linear Models , 1992 .
[22] E. DeLong,et al. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. , 1988, Biometrics.
[23] Leo Breiman,et al. Classification and Regression Trees , 1984 .
[24] G. Mcgwin,et al. Discrimination between glaucomatous and nonglaucomatous eyes using quantitative imaging devices and subjective optic nerve head assessment. , 2006, Investigative ophthalmology & visual science.