Electrochemical reactor dictates site selectivity in N-heteroarene carboxylations

[1]  Kecheng Zhang,et al.  Recent advances in electrochemical carboxylation reactions using carbon dioxide , 2021, Green Chemical Engineering.

[2]  Philip R. D. Murray,et al.  Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis , 2021, Chemical reviews.

[3]  Jonathan M. Meinhardt,et al.  Electrocatalysis as an enabling technology for organic synthesis. , 2021, Chemical Society reviews.

[4]  J. Kim,et al.  A radical approach for the selective C–H borylation of azines , 2021, Nature.

[5]  Da‐Gang Yu,et al.  Radical Carboxylative Cyclizations and Carboxylations with CO2. , 2021, Accounts of chemical research.

[6]  CO2 as a Building Block in Organic Synthesis , 2020 .

[7]  S. Buchwald,et al.  Microfluidic electrochemistry for single-electron transfer redox-neutral reactions , 2020, Science.

[8]  Fei Wang,et al.  Electrochemical Oxidation of Organic Molecules at Lower Overpotential: Accessing Broader Functional Group Compatibility with Electron-Proton Transfer Mediators. , 2020, Accounts of chemical research.

[9]  Qi-Liang Yang,et al.  Site-Selective C-H Functionalization via Synergistic Use of Electrochemistry and Transition Metal Catalysis. , 2020, Accounts of chemical research.

[10]  L. Ackermann Metalla-electrocatalyzed C-H Activation by Earth-Abundant 3d Metals and Beyond. , 2019, Accounts of chemical research.

[11]  A. Lei,et al.  Electrochemical Arylation of Electron-Deficient Arenes through Reductive Activation. , 2019, Angewandte Chemie.

[12]  Robert J. Phipps,et al.  Recent Advances in Minisci-Type Reactions. , 2019, Angewandte Chemie.

[13]  Shangda Li,et al.  Rhodium(I)-Catalyzed Aryl C-H Carboxylation of 2-Arylanilines with CO2. , 2019, Organic letters.

[14]  J. Fuchs,et al.  Site-Selective C-H Functionalization of (Hetero)Arenes via Transient, Non-Symmetric Iodanes. , 2019, Chem.

[15]  Ruben Martin,et al.  Transition-Metal-Catalyzed Carboxylation Reactions with Carbon Dioxide. , 2018, Angewandte Chemie.

[16]  Robert S Paton,et al.  Heterobiaryl synthesis by contractive C–C coupling via P(V) intermediates , 2018, Science.

[17]  M. Kärkäs Electrochemical strategies for C-H functionalization and C-N bond formation. , 2018, Chemical Society reviews.

[18]  Gang Li,et al.  Ligand-enabled site-selectivity in a versatile rhodium(ii)-catalysed aryl C–H carboxylation with CO2 , 2018, Nature Catalysis.

[19]  Robert J. Phipps,et al.  Catalytic enantioselective Minisci-type addition to heteroarenes , 2018, Science.

[20]  Anton Wiebe,et al.  Electrifying Organic Synthesis , 2018, Angewandte Chemie.

[21]  P. Baran,et al.  Synthetic Organic Electrochemical Methods Since 2000: On the Verge of a Renaissance. , 2017, Chemical reviews.

[22]  I. Larrosa,et al.  C−H Carboxylation of Aromatic Compounds through CO2 Fixation , 2017, ChemSusChem.

[23]  Jingguang G. Chen,et al.  The Central Role of Bicarbonate in the Electrochemical Reduction of Carbon Dioxide on Gold. , 2017, Journal of the American Chemical Society.

[24]  Bichlien H. Nguyen,et al.  Paired Electrolysis in the Simultaneous Production of Synthetic Intermediates and Substrates. , 2016, Journal of the American Chemical Society.

[25]  jin-quan yu,et al.  A Simple and Versatile Amide Directing Group for C-H Functionalizations. , 2016, Angewandte Chemie.

[26]  Ke Chen,et al.  Scalable and Sustainable Electrochemical Allylic C–H Oxidation , 2016, Nature.

[27]  O. Larionov,et al.  Recent Advances in the C-H-Functionalization of the Distal Positions in Pyridines and Quinolines. , 2015, Tetrahedron.

[28]  H. Zare,et al.  Dual activity of electrocatalytic activated CO2 toward pyridine for synthesis of isonicotinic acid: An EC′C′C mechanism , 2015 .

[29]  M. Beller,et al.  Using carbon dioxide as a building block in organic synthesis , 2015, Nature Communications.

[30]  J. T. Njardarson,et al.  Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. , 2014, Journal of medicinal chemistry.

[31]  J. Hartwig,et al.  Rhodium-Catalyzed Intermolecular C–H Silylation of Arenes with High Steric Regiocontrol , 2014, Science.

[32]  D. Blackmond,et al.  Radical‐Based Regioselective C—H Functionalization of Electron‐Deficient Heteroarenes: Scope, Tunability, and Predictability. , 2013 .

[33]  J. Hartwig,et al.  Selective C-H Fluorination of Pyridines and Diazines Inspired by a Classic Amination Reaction , 2013, Science.

[34]  Yong Yan,et al.  Electrochemistry of aqueous pyridinium: exploration of a key aspect of electrocatalytic reduction of CO2 to methanol. , 2013, Journal of the American Chemical Society.

[35]  Z. Hou,et al.  N-Heterocyclic carbene (NHC)–copper-catalysed transformations of carbon dioxide , 2013 .

[36]  C. Bruneau,et al.  Ruthenium(II)‐Catalyzed C‐H Bond Activation and Functionalization , 2013 .

[37]  P. Baran,et al.  Innate and guided C-H functionalization logic. , 2012, Accounts of chemical research.

[38]  D. Spring,et al.  Palladium-catalysed cross-coupling of organosilicon reagents. , 2012, Chemical Society reviews.

[39]  Yoshiaki Nakao,et al.  Transition-Metal-Catalyzed C—H Functionalization for the Synthesis of Substituted Pyridines , 2012 .

[40]  Jung Min Joo,et al.  C-H arylation of pyridines: high regioselectivity as a consequence of the electronic character of C-H bonds and heteroarene ring. , 2011, Journal of the American Chemical Society.

[41]  jin-quan yu,et al.  Ligand-Promoted C-3 Selective C—H Olefination of Pyridines with Pd Catalysts. , 2011 .

[42]  S. Nolan,et al.  Carboxylation of C—H Bonds Using N-Heterocyclic Carbene Gold(I) Complexes. , 2010 .

[43]  T. Hiyama,et al.  Selective C-4 alkylation of pyridine by nickel/Lewis acid catalysis. , 2010, Journal of the American Chemical Society.

[44]  J. Ellman,et al.  Rh(I)‐Catalyzed Alkylation of Quinolines and Pyridines via C—H Bond Activation. , 2007 .

[45]  V. Gevorgyan,et al.  Direct transition metal-catalyzed functionalization of heteroaromatic compounds. , 2007, Chemical Society reviews.

[46]  T. Wirth,et al.  Direct iodination of alkanes. , 2003, Organic letters.

[47]  A. Katritzky,et al.  Heterocycles in Life and Society: An Introduction to Heterocyclic Chemistry and Biochemistry and the Role of Heterocycles in Science, Technology, Medicine and Agriculture , 1997 .

[48]  Jeffrey I. Seeman,et al.  Effect of conformational change on reactivity in organic chemistry. Evaluations, applications, and extensions of Curtin-Hammett Winstein-Holness kinetics , 1983 .

[49]  H. Lund,et al.  ELECTROCHEMICAL CARBOXYLATION OF SOME HETEROAROMATIC COMPOUNDS , 1982 .