Multiscale Methods for Stiff and Constrained Mechanical Systems

We suggest multiscale methods for the integration of systems of second-order ordinary differential equations (ODEs) whose solutions include components that oscillate with large frequencies and small amplitudes. The methods do not need to integrate completely the fast oscillations and may employ step-sizes determined by the rate of change of the slow motions of the system. The technique may be used with any standard ODE method with fixed step-size and also in conjunction with off-the-shelf, variable-step ODE software. Alternatively, the ideas presented here may be used to integrate constrained mechanical systems by means of conventional ODE codes.

[1]  Robert D. Skeel,et al.  Long-Time-Step Methods for Oscillatory Differential Equations , 1998, SIAM J. Sci. Comput..

[2]  Eric Vanden-Eijnden,et al.  A computational strategy for multiscale chaotic systems with applications to Lorenz 96 model , 2004 .

[3]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[4]  J. M. Sanz-Serna,et al.  Heterogeneous Multiscale Methods for Mechanical Systems with Vibrations , 2010, SIAM J. Sci. Comput..

[5]  E. Weinan Analysis of the heterogeneous multiscale method for ordinary differential equations , 2003 .

[6]  Panayotis G. Kevrekidis,et al.  Deciding the Nature of the Coarse Equation through Microscopic Simulations: The Baby-Bathwater Scheme , 2003, Multiscale Model. Simul..

[7]  Björn Engquist,et al.  A multiscale method for highly oscillatory ordinary differential equations with resonance , 2008, Math. Comput..

[8]  Björn Engquist,et al.  Multiple Time Scale Numerical Methods for the Inverted Pendulum Problem , 2005 .

[9]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[10]  Mari Paz Calvo,et al.  Instabilities and Inaccuracies in the Integration of Highly Oscillatory Problems , 2009, SIAM J. Sci. Comput..

[11]  J. M. Sanz-Serna,et al.  Modulated Fourier expansions and heterogeneous multiscale methods , 2009 .

[12]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[13]  M. A. Akanbi,et al.  Numerical solution of initial value problems in differential - algebraic equations , 2005 .

[14]  E. Hairer,et al.  Simulating Hamiltonian dynamics , 2006, Math. Comput..

[15]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[16]  Björn Engquist,et al.  Heterogeneous multiscale methods for stiff ordinary differential equations , 2005, Math. Comput..

[17]  Björn Engquist,et al.  Numerical Multiscale Methods for Coupled Oscillators , 2009, Multiscale Model. Simul..

[18]  Jesús María Sanz-Serna,et al.  Mollified Impulse Methods for Highly Oscillatory Differential Equations , 2008, SIAM J. Numer. Anal..

[19]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .