RANDOM MATRICES: THE CIRCULAR LAW
暂无分享,去创建一个
[1] Kenneth B. Huber. Department of Mathematics , 1894 .
[2] J. Littlewood,et al. On the Number of Real Roots of a Random Algebraic Equation , 1938 .
[3] J. Littlewood,et al. On the number of real roots of a random algebraic equation. II , 1939 .
[4] P. Erdös. On a lemma of Littlewood and Offord , 1945 .
[5] J. Ginibre. Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .
[6] C. Esseen. On the Kolmogorov-Rogozin inequality for the concentration function , 1966 .
[7] János Komlós,et al. The eigenvalues of random symmetric matrices , 1981, Comb..
[8] Béla Bollobás,et al. Random Graphs , 1985 .
[9] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .
[10] E. Szemerédi,et al. On the probability that a random ±1-matrix is singular , 1995 .
[11] A. Edelman. The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .
[12] V. L. GIRKO. Strong Circular Law , 1997 .
[13] L. Trefethen,et al. Numerical linear algebra , 1997 .
[14] Béla Bollobás,et al. Random Graphs: Notation , 2001 .
[15] Shang-Hua Teng,et al. Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time , 2001, STOC '01.
[16] The Strong Circular Law. Twenty years later. Part II , 2004 .
[17] T. Tao,et al. Inverse Littlewood-Offord theorems and the condition number of random discrete matrices , 2005, math/0511215.
[18] Daniel A. Spielman. The Smoothed Analysis of Algorithms , 2005, FCT.
[19] Van H. Vu,et al. Spectral norm of random matrices , 2005, STOC '05.
[20] M. Rudelson. Invertibility of random matrices: norm of the inverse , 2005, math/0507024.
[21] M. Rudelson,et al. Smallest singular value of random matrices and geometry of random polytopes , 2005 .
[22] D. Spielman,et al. Smoothed Analysis of the Condition Numbers and Growth Factors of Matrices , 2003, SIAM Journal on Matrix Analysis and Applications.
[23] Terence Tao,et al. John-type theorems for generalized arithmetic progressions and iterated sumsets , 2006 .
[24] Additive Combinatorics: Contents , 2006 .
[25] T. Tao,et al. On random ±1 matrices: Singularity and determinant , 2006 .
[26] Terence Tao,et al. Additive combinatorics , 2007, Cambridge studies in advanced mathematics.
[27] Terence Tao,et al. The condition number of a randomly perturbed matrix , 2007, STOC '07.
[28] F. Gotze,et al. On the Circular Law , 2007, math/0702386.
[29] J. W. Silverstein,et al. Spectral Analysis of Large Dimensional Random Matrices , 2009 .