RANDOM MATRICES: THE CIRCULAR LAW

Let x be a complex random variable with mean zero and bounded variance σ2. Let Nn be a random matrix of order n with entries being i.i.d. copies of x. Let λ1, …, λn be the eigenvalues of . Define the empirical spectral distributionμn of Nn by the formula The following well-known conjecture has been open since the 1950's: Circular Law Conjecture: μn converges to the uniform distribution μ∞ over the unit disk as n tends to infinity. We prove this conjecture, with strong convergence, under the slightly stronger assumption that the (2 + η)th-moment of x is bounded, for any η > 0. Our method builds and improves upon earlier work of Girko, Bai, Gotze–Tikhomirov, and Pan–Zhou, and also applies for sparse random matrices. The new key ingredient in the paper is a general result about the least singular value of random matrices, which was obtained using tools and ideas from additive combinatorics.

[1]  Kenneth B. Huber Department of Mathematics , 1894 .

[2]  J. Littlewood,et al.  On the Number of Real Roots of a Random Algebraic Equation , 1938 .

[3]  J. Littlewood,et al.  On the number of real roots of a random algebraic equation. II , 1939 .

[4]  P. Erdös On a lemma of Littlewood and Offord , 1945 .

[5]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[6]  C. Esseen On the Kolmogorov-Rogozin inequality for the concentration function , 1966 .

[7]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[8]  Béla Bollobás,et al.  Random Graphs , 1985 .

[9]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[10]  E. Szemerédi,et al.  On the probability that a random ±1-matrix is singular , 1995 .

[11]  A. Edelman The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .

[12]  V. L. GIRKO Strong Circular Law , 1997 .

[13]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[14]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[15]  Shang-Hua Teng,et al.  Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time , 2001, STOC '01.

[16]  The Strong Circular Law. Twenty years later. Part II , 2004 .

[17]  T. Tao,et al.  Inverse Littlewood-Offord theorems and the condition number of random discrete matrices , 2005, math/0511215.

[18]  Daniel A. Spielman The Smoothed Analysis of Algorithms , 2005, FCT.

[19]  Van H. Vu,et al.  Spectral norm of random matrices , 2005, STOC '05.

[20]  M. Rudelson Invertibility of random matrices: norm of the inverse , 2005, math/0507024.

[21]  M. Rudelson,et al.  Smallest singular value of random matrices and geometry of random polytopes , 2005 .

[22]  D. Spielman,et al.  Smoothed Analysis of the Condition Numbers and Growth Factors of Matrices , 2003, SIAM Journal on Matrix Analysis and Applications.

[23]  Terence Tao,et al.  John-type theorems for generalized arithmetic progressions and iterated sumsets , 2006 .

[24]  Additive Combinatorics: Contents , 2006 .

[25]  T. Tao,et al.  On random ±1 matrices: Singularity and determinant , 2006 .

[26]  Terence Tao,et al.  Additive combinatorics , 2007, Cambridge studies in advanced mathematics.

[27]  Terence Tao,et al.  The condition number of a randomly perturbed matrix , 2007, STOC '07.

[28]  F. Gotze,et al.  On the Circular Law , 2007, math/0702386.

[29]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .