Transient chirping in distributed-feedback (DFB) lasers: effect of spatial hole-burning along the laser axis

An analysis of the chirping behavior of directly modulated distributed-feedback (DFB) lasers which takes into consideration the effects of spatial hole-burning along the laser axis is discussed. Rate equations including these effects are derived. To calculate the rate equations, the threshold condition of phase-shifted DFB lasers with a nonuniform refractive index distribution is analyzed. The calculations are carried out on phase-shifted DFB structures under the condition of random nonreturn to zero modulation at 1.8 Gb/s. The results show that the spatial hole-burning along the axis significantly affects the chirping behavior, adding to the effects induced by the spectral hole-burning alone. >

[1]  S. Akiba,et al.  Distributed feedback InGaAsP/InP lasers with window region emitting at 1.5 µm range , 1983 .

[2]  S. Yamakoshi,et al.  Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers , 1987 .

[3]  G. Agrawal Power spectrum of directly modulated single-mode semiconductor lasers: Chirp-induced fine structure , 1985 .

[4]  T. Ikegami,et al.  Phase control by coating in 1.56 µm distributed feedback lasers , 1985 .

[5]  T. Koch,et al.  Effect of nonlinear gain reduction on semiconductor laser wavelength chirping , 1986 .

[6]  Govind P. Agrawal,et al.  Coupled-cavity semiconductor lasers under current modulation: Small-signal analysis , 1985 .

[7]  F. Koyama,et al.  Frequency chirping in external modulators , 1988 .

[8]  Donald R. Scifres,et al.  Effect of external reflectors on longitudinal modes of distributed feedback lasers , 1975 .

[9]  Yuichi Matsushima,et al.  Effect of mirror facets on lasing characteristics of distributed feedback InGaAsP/InP laser diodes at 1.5 µm range , 1984 .

[10]  Yuzo Hirayama,et al.  Five-wavelength integrated DFB laser arrays with quarter-wave-shifted structures , 1987 .

[11]  Rodney S. Tucker,et al.  Circuit modeling of the effect of diffusion on damping in a narrow-stripe semiconductor laser , 1983 .

[12]  Shigehisa Arai,et al.  Dynamic single-mode semiconductor lasers with a distributed reflector , 1983 .

[13]  H. Kogelnik,et al.  Coupled‐Wave Theory of Distributed Feedback Lasers , 1972 .

[14]  Universal relationship between resonant frequency and damping rate of 1.3 μm InGaAsP semiconductor lasers , 1987 .

[15]  Yuichi Matsushima,et al.  Room-temperature cw operation of distributed-feedback buried-heterostructure ingaasp/inp lasers emitting at 1.57 μm , 1981 .

[16]  S. Akiba,et al.  Low-threshold-current distributed-feedback InGaAsP/InP CW lasers , 1982 .

[17]  M. Osiński,et al.  Linewidth broadening factor in semiconductor lasers--An overview , 1987 .

[18]  L. D. Westbrook Addendum: Measurement of dg/dN and dn/dN and their dependence on photon energy in ¿ = 1.5 ¿m InGaAsP laser diodes , 1987 .

[19]  R. A. Linke,et al.  Transient chirping in single-frequency lasers: lightwave systems consequences , 1984 .

[20]  Fine structures in the broadened line of distributed feedback lasers under high-speed direct modulation , 1984 .

[21]  Y. Tohmori,et al.  Spectral behavior of 1.5 µm BIG-DBR-DSM lasers , 1987 .

[22]  Fumio Koyama,et al.  1.5 μm phase-shifted DFB lasers for single-mode operation , 1984 .

[23]  C. Henry,et al.  The relation of line narrowing and chirp reduction resulting from the coupling of a semiconductor laser to passive resonator , 1987 .

[24]  K. Utaka,et al.  Analysis of quarter-wave-shifted DFB laser , 1984 .

[25]  Yoshiaki Nakano,et al.  Proposal of a distributed feedback laser with nonuniform stripe width for complete single-mode oscillation , 1984 .

[26]  Richard E. Wagner Future 1.55-µm undersea lightwave systems , 1984 .

[27]  Ivan P. Kaminow,et al.  High-frequency characteristics of directly modulated InGaAsP ridge waveguide and buried heterostructure lasers , 1984 .

[28]  Fumio Koyama,et al.  1.5 μm phase adjusted active distributed reflector laser for complete dynamic single-mode operation , 1984 .

[29]  H. Soda,et al.  GaInAsP/InP phase-adjusted distributed feedback lasers with a step-like nonuniform stripe width structure , 1984 .

[30]  Rodney S. Tucker,et al.  High-speed modulation of semiconductor lasers , 1985 .

[31]  John E. Bowers,et al.  High speed semiconductor laser design and performance , 1987 .

[32]  R. Linke,et al.  Modulation induced transient chirping in single frequency lasers , 1985 .

[33]  Yuichi Matsushima,et al.  ?/4-shifted InGaAsP/InP DFB lasers , 1986 .

[34]  Yoshio Noguchi,et al.  CW operation of DFB-BH GaInAsP/InP lasers in 1.5 μm wavelength region , 1982 .

[35]  V. Lanzisera,et al.  Ultra-high-speed modulation of 1.3-µm InGaAsP diode lasers , 1986 .

[36]  H. Furuyama,et al.  Determination of coupling coefficient of DFB lasers by a newly proposed method , 1987 .

[37]  Fine structure of frequency chirping and FM sideband generation in single‐longitudinal‐mode semiconductor lasers under 10‐GHz direct intensity modulation , 1985 .

[38]  Y. Suzuki,et al.  New 1.5 μm wavelength GaInAsp/InP distributed feedback laser , 1982 .