Molecular architecture of potassium chloride co-transporter KCC2

[1]  A. Jawhari,et al.  Expression and purification of native and functional influenza A virus matrix 2 proton selective ion channel. , 2017, Protein expression and purification.

[2]  A. Jawhari,et al.  Novel systematic detergent screening method for membrane proteins solubilization. , 2017, Analytical biochemistry.

[3]  C. Rivera,et al.  The membrane trafficking and functionality of the K+-Cl− co-transporter KCC2 is regulated by TGF-β2 , 2016, Journal of Cell Science.

[4]  N. Brandon,et al.  Compromising KCC2 transporter activity enhances the development of continuous seizure activity , 2016, Neuropharmacology.

[5]  A. Jawhari,et al.  Overcoming bottlenecks in the membrane protein structural biology pipeline. , 2016, Biochemical Society transactions.

[6]  F. Bertucci,et al.  PRICKLE1 Contributes to Cancer Cell Dissemination through Its Interaction with mTORC2. , 2016, Developmental cell.

[7]  Brian Middleton,et al.  Optimisation of a simple method to transiently transfect a CHO cell line in high-throughput and at large scale. , 2015, Protein expression and purification.

[8]  D. Tuveson,et al.  BAG3 promotes pancreatic ductal adenocarcinoma growth by activating stromal macrophages , 2015, Nature Communications.

[9]  R. J. Mather,et al.  Selective Inhibition of KCC2 Leads to Hyperexcitability and Epileptiform Discharges in Hippocampal Slices and In Vivo , 2015, The Journal of Neuroscience.

[10]  N. Brandon,et al.  KCC2 activity is critical in limiting the onset and severity of status epilepticus , 2015, Proceedings of the National Academy of Sciences.

[11]  M. Woodin,et al.  Kainate Receptors Coexist in a Functional Complex with KCC2 and Regulate Chloride Homeostasis in Hippocampal Neurons , 2014, Cell reports.

[12]  C. Rivera,et al.  Distribution of neuronal KCC2a and KCC2b isoforms in mouse CNS , 2014, The Journal of comparative neurology.

[13]  H. Nothwang,et al.  A Novel Regulatory Locus of Phosphorylation in the C Terminus of the Potassium Chloride Cotransporter KCC2 That Interferes with N-Ethylmaleimide or Staurosporine-mediated Activation*♦ , 2014, The Journal of Biological Chemistry.

[14]  C. Rivera,et al.  Current view on the functional regulation of the neuronal K+-Cl− cotransporter KCC2 , 2014, Front. Cell. Neurosci..

[15]  K. Kaila,et al.  Modulation of neuronal activity by phosphorylation of the K–Cl cotransporter KCC2 , 2013, Trends in Neurosciences.

[16]  P. Bregestovski,et al.  Improved method for efficient imaging of intracellular Cl− with Cl-Sensor using conventional fluorescence setup , 2013, Front. Mol. Neurosci..

[17]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[18]  Dominika Elmlund,et al.  SIMPLE: Software for ab initio reconstruction of heterogeneous single-particles. , 2012, Journal of structural biology.

[19]  A. Waterson,et al.  Further optimization of the K-Cl cotransporter KCC2 antagonist ML077: development of a highly selective and more potent in vitro probe. , 2012, Bioorganic & medicinal chemistry letters.

[20]  Yigong Shi,et al.  Structure and mechanism of a glutamate–GABA antiporter , 2012, Nature.

[21]  K. Lage,et al.  Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues , 2012, Nature Communications.

[22]  F. Benfenati,et al.  Intracellular chloride concentration influences the GABAA receptor subunit composition , 2012, Nature Communications.

[23]  P. Bregestovski,et al.  Knocking down of the KCC2 in rat hippocampal neurons increases intracellular chloride concentration and compromises neuronal survival , 2011, The Journal of physiology.

[24]  A. di Pietro,et al.  Structuring Detergents for Extracting and Stabilizing Functional Membrane Proteins , 2011, PloS one.

[25]  S. Moss,et al.  NMDA receptor activity downregulates KCC2 resulting in depolarizing GABAA receptor mediated currents , 2011, Nature Neuroscience.

[26]  M. Mann,et al.  Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. , 2010, Journal of proteome research.

[27]  C. Surowy,et al.  A Thallium Transport FLIPR-Based Assay for the Identification of KCC2-Positive Modulators , 2010, Journal of biomolecular screening.

[28]  E. Friauf,et al.  Opposite effect of membrane raft perturbation on transport activity of KCC2 and NKCC1 , 2009, Journal of neurochemistry.

[29]  C. Colangelo,et al.  Sites of Regulated Phosphorylation that Control K-Cl Cotransporter Activity , 2009, Cell.

[30]  C. Rivera,et al.  Coexpression and Heteromerization of Two Neuronal K-Cl Cotransporter Isoforms in Neonatal Brain* , 2009, Journal of Biological Chemistry.

[31]  Dante S. Bortone,et al.  KCC2 Expression Promotes the Termination of Cortical Interneuron Migration in a Voltage-Sensitive Calcium-Dependent Manner , 2009, Neuron.

[32]  R. Dutzler,et al.  X-ray structure of the C-terminal domain of a prokaryotic cation-chloride cotransporter. , 2009, Structure.

[33]  C. Pellegrino,et al.  Efficient transfection of DNA or shRNA vectors into neurons using magnetofection , 2007, Nature Protocols.

[34]  K. Kaila,et al.  A Novel N-terminal Isoform of the Neuron-specific K-Cl Cotransporter KCC2* , 2007, Journal of Biological Chemistry.

[35]  J. A. Payne,et al.  Direct Protein Kinase C-dependent Phosphorylation Regulates the Cell Surface Stability and Activity of the Potassium Chloride Cotransporter KCC2* , 2007, Journal of Biological Chemistry.

[36]  E. Friauf,et al.  Oligomerization of KCC2 Correlates with Development of Inhibitory Neurotransmission , 2006, The Journal of Neuroscience.

[37]  Y. Ben-Ari,et al.  Early expression of KCC2 in rat hippocampal cultures augments expression of functional GABA synapses , 2005, The Journal of physiology.

[38]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[39]  F. Kersten,et al.  Dimeric architecture of the human bumetanide-sensitive Na-K-Cl Co-transporter. , 2003, Journal of the American Society of Nephrology : JASN.

[40]  L. P. Van den Heuvel,et al.  The Structural Unit of the Thiazide-sensitive NaCl Cotransporter Is a Homodimer* , 2003, Journal of Biological Chemistry.

[41]  D. Lovinger,et al.  Hyperexcitability and epilepsy associated with disruption of the mouse neuronal‐specific K–Cl cotransporter gene , 2002, Hippocampus.

[42]  K. Ballanyi,et al.  Disruption of KCC2 Reveals an Essential Role of K-Cl Cotransport Already in Early Synaptic Inhibition , 2001, Neuron.

[43]  Santhosh K. P. Kumar,et al.  Detection of Na(+) transporter proteins in urine. , 2000, Journal of the American Society of Nephrology : JASN.

[44]  R. J. Turner,et al.  The structural unit of the secretory Na+-K+-2Cl- cotransporter (NKCC1) is a homodimer. , 2000, Biochemistry.

[45]  W Chiu,et al.  EMAN: semiautomated software for high-resolution single-particle reconstructions. , 1999, Journal of structural biology.

[46]  J. A. Payne,et al.  Molecular Characterization of a Putative K-Cl Cotransporter in Rat Brain , 1996, The Journal of Biological Chemistry.