Amyotrophic Lateral Sclerosis.

From the Department of Neurology, University of Massachusetts Medical School, Worcester (R.H.B.); and the Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King’s College London, London (A.A.-C.). Address reprint requests to Dr. Brown at the Department of Neurology, University of Massachusetts Medical School, 55 Lake Ave. N., Worcester, MA 01655, or at robert . brown@ umassmed . edu.

[1]  P. Gleeson,et al.  C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking , 2017, Human molecular genetics.

[2]  J. Little,et al.  Identification of risk factors associated with onset and progression of amyotrophic lateral sclerosis using systematic review and meta‐analysis , 2017, Neurotoxicology.

[3]  Robert H. Brown,et al.  Decoding ALS: from genes to mechanism , 2016, Nature.

[4]  A. Al-Chalabi,et al.  Amyotrophic lateral sclerosis: moving towards a new classification system , 2016, The Lancet Neurology.

[5]  Eric W. Danielson,et al.  Mutant PFN1 causes ALS phenotypes and progressive motor neuron degeneration in mice by a gain of toxicity , 2016, Proceedings of the National Academy of Sciences.

[6]  A. Chiò,et al.  Influence of cigarette smoking on ALS outcome: a population-based study , 2016, Journal of Neurology, Neurosurgery & Psychiatry.

[7]  Knut Engedal,et al.  Frontotemporal Dementia , 2016, Journal of geriatric psychiatry and neurology.

[8]  Parag G. Patil,et al.  Transplantation of spinal cord–derived neural stem cells for ALS , 2016, Neurology.

[9]  Annelot M. Dekker,et al.  Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis , 2017 .

[10]  S. Boccia,et al.  Physical activity, and physical activity related to sports, leisure and occupational activity as risk factors for ALS: A systematic review , 2016, Neuroscience & Biobehavioral Reviews.

[11]  Sandra D'Alfonso,et al.  Association of a Locus in the CAMTA1 Gene With Survival in Patients With Sporadic Amyotrophic Lateral Sclerosis. , 2016, JAMA neurology.

[12]  D. Borchelt,et al.  C9orf72 BAC Mouse Model with Motor Deficits and Neurodegenerative Features of ALS/FTD , 2016, Neuron.

[13]  C. Heyser,et al.  Gain of Toxicity from ALS/FTD-Linked Repeat Expansions in C9ORF72 Is Alleviated by Antisense Oligonucleotides Targeting GGGGCC-Containing RNAs , 2016, Neuron.

[14]  D. Richardson,et al.  Military service, deployments, and exposures in relation to amyotrophic lateral sclerosis etiology. , 2016, Environment international.

[15]  G. Rouleau,et al.  ALS: Recent Developments from Genetics Studies , 2016, Current Neurology and Neuroscience Reports.

[16]  R. Rademakers,et al.  Genetics of FTLD: overview and what else we can expect from genetic studies , 2016, Journal of neurochemistry.

[17]  M. Weisskopf,et al.  Physical Trauma and Amyotrophic Lateral Sclerosis: A Population-Based Study Using Danish National Registries. , 2016, American journal of epidemiology.

[18]  Robert H. Brown,et al.  Adeno‐associated virus–delivered artificial microRNA extends survival and delays paralysis in an amyotrophic lateral sclerosis mouse model , 2016, Annals of neurology.

[19]  L. Petrucelli,et al.  C9orf72 BAC Transgenic Mice Display Typical Pathologic Features of ALS/FTD , 2015, Neuron.

[20]  H. Horvitz,et al.  Human C9ORF72 Hexanucleotide Expansion Reproduces RNA Foci and Dipeptide Repeat Proteins but Not Neurodegeneration in BAC Transgenic Mice , 2015, Neuron.

[21]  Dragan Maric,et al.  Human endogenous retrovirus-K contributes to motor neuron disease , 2015, Science Translational Medicine.

[22]  Bruce L. Miller,et al.  GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport , 2015, Nature.

[23]  Sean J. Miller,et al.  The C9orf72 repeat expansion disrupts nucleocytoplasmic transport , 2015, Nature.

[24]  T. Hortobágyi,et al.  Wild type human TDP-43 potentiates ALS-linked mutant TDP-43 driven progressive motor and cortical neuron degeneration with pathological features of ALS , 2015, Acta neuropathologica communications.

[25]  B. Traynor,et al.  Genetic causes of amyotrophic lateral sclerosis: New genetic analysis methodologies entailing new opportunities and challenges , 2015, Brain Research.

[26]  Kevin F. Bieniek,et al.  Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease , 2015, Acta Neuropathologica.

[27]  G. Rouleau,et al.  Defining the genetic connection linking amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD). , 2015, Trends in genetics : TIG.

[28]  Robert H. Brown,et al.  Emerging mechanisms of molecular pathology in ALS. , 2015, The Journal of clinical investigation.

[29]  Ann C McKee,et al.  The Neuropathology of Chronic Traumatic Encephalopathy , 2015, Brain pathology.

[30]  G. Comi,et al.  TUBA4A gene analysis in sporadic amyotrophic lateral sclerosis: identification of novel mutations , 2015, Journal of Neurology.

[31]  Brittany N. Lasseigne,et al.  Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways , 2015, Science.

[32]  T. Wieland,et al.  Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia , 2015, Nature Neuroscience.

[33]  M. Cudkowicz,et al.  Clinical Trial Designs in Amyotrophic Lateral Sclerosis: Does One Design Fit All? , 2015, Neurotherapeutics.

[34]  T. Siddique,et al.  Amyotrophic Lateral Sclerosis Overview , 2015 .

[35]  F. Piehl,et al.  Risk factors for amyotrophic lateral sclerosis , 2015, Clinical epidemiology.

[36]  N. Pearce,et al.  Analysis of amyotrophic lateral sclerosis as a multistep process: a population-based modelling study , 2014, The Lancet Neurology.

[37]  A. Hyman,et al.  Liquid-liquid phase separation in biology. , 2014, Annual review of cell and developmental biology.

[38]  Nazem Atassi,et al.  Diagnostic timelines and delays in diagnosing amyotrophic lateral sclerosis (ALS) , 2014, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[39]  A. Hofman,et al.  C9orf72 and UNC13A are shared risk loci for amyotrophic lateral sclerosis and frontotemporal dementia: A genome‐wide meta‐analysis , 2014, Annals of neurology.

[40]  J. Kirby,et al.  The widening spectrum of C9ORF72-related disease; genotype/phenotype correlations and potential modifiers of clinical phenotype , 2014, Acta Neuropathologica.

[41]  Adriano Chiò,et al.  State of play in amyotrophic lateral sclerosis genetics , 2013, Nature Neuroscience.

[42]  O. Hardiman,et al.  Dexpramipexole versus placebo for patients with amyotrophic lateral sclerosis (EMPOWER): a randomised, double-blind, phase 3 trial , 2013, The Lancet Neurology.

[43]  A. Al-Chalabi,et al.  The epidemiology of ALS: a conspiracy of genes, environment and time , 2013, Nature Reviews Neurology.

[44]  Gene W. Yeo,et al.  Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration , 2013, Proceedings of the National Academy of Sciences.

[45]  L. Petrucelli,et al.  Targeting RNA Foci in iPSC-Derived Motor Neurons from ALS Patients with a C9ORF72 Repeat Expansion , 2013, Science Translational Medicine.

[46]  Nipun A. Mistry,et al.  RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention , 2013, Neuron.

[47]  D. Cleveland,et al.  Converging Mechanisms in ALS and FTD: Disrupted RNA and Protein Homeostasis , 2013, Neuron.

[48]  A. Chiò,et al.  Global Epidemiology of Amyotrophic Lateral Sclerosis: A Systematic Review of the Published Literature , 2013, Neuroepidemiology.

[49]  A. Pestronk,et al.  An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study , 2013, The Lancet Neurology.

[50]  Oliver D. King,et al.  Stress granules as crucibles of ALS pathogenesis , 2013, The Journal of cell biology.

[51]  Wim Robberecht,et al.  The changing scene of amyotrophic lateral sclerosis , 2013, Nature Reviews Neuroscience.

[52]  Michael Benatar,et al.  Prion-like domain mutations in hnRNPs cause multisystem proteinopathy and ALS , 2013, Nature.

[53]  Y. Li,et al.  Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis , 2013, Nature Neuroscience.

[54]  R. Roos,et al.  Spinal cord: motor neuron diseases. , 2013, Neurologic clinics.

[55]  Carl D Langefeld,et al.  Age of onset of amyotrophic lateral sclerosis is modulated by a locus on 1p34.1 , 2013, Neurobiology of Aging.

[56]  Leonard H van den Berg,et al.  Evidence for an oligogenic basis of amyotrophic lateral sclerosis. , 2012, Human molecular genetics.

[57]  A. Goris,et al.  EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans , 2012, Nature Medicine.

[58]  S. C. Chafe,et al.  Mutations in the Profilin 1 Gene Cause Familial Amyotrophic Lateral Sclerosis , 2012, Nature.

[59]  S. Pereson,et al.  A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study , 2012, The Lancet Neurology.

[60]  S. Servidei,et al.  P525L FUS mutation is consistently associated with a severe form of juvenile Amyotrophic Lateral Sclerosis , 2012, Neuromuscular Disorders.

[61]  P. Mcgeer,et al.  The ALS/PDC syndrome of Guam: Potential biomarkers for an enigmatic disorder , 2011, Progress in Neurobiology.

[62]  S. Ajroud‐Driss,et al.  SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. , 2011, Archives of neurology.

[63]  Michael Sendtner,et al.  Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis , 2011, Nature Reviews Neurology.

[64]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[65]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[66]  Ammar Al-Chalabi,et al.  Clinical genetics of amyotrophic lateral sclerosis: what do we really know? , 2011, Nature Reviews Neurology.

[67]  T. Siddique,et al.  Making Connections: Pathology and Genetics Link Amyotrophic Lateral Sclerosis with Frontotemporal Lobe Dementia , 2011, Journal of Molecular Neuroscience.

[68]  C. Lewis,et al.  Modelling the Effects of Penetrance and Family Size on Rates of Sporadic and Familial Disease , 2011, Human Heredity.

[69]  J. Haines,et al.  Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia , 2011, Nature.

[70]  J. Lasiene,et al.  Glial Cells in Amyotrophic Lateral Sclerosis , 2011, Neurology research international.

[71]  M. Thun,et al.  Smoking and risk of amyotrophic lateral sclerosis: a pooled analysis of 5 prospective cohorts. , 2011, Archives of neurology.

[72]  Adriano Chiò,et al.  The epidemiology and treatment of ALS: Focus on the heterogeneity of the disease and critical appraisal of therapeutic trials , 2011, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[73]  Robert H. Brown,et al.  Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. , 2010, Human molecular genetics.

[74]  A. Al-Chalabi,et al.  An estimate of amyotrophic lateral sclerosis heritability using twin data , 2010, Journal of Neurology, Neurosurgery & Psychiatry.

[75]  Jeffery N Agar,et al.  Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS , 2010, Nature Neuroscience.

[76]  John Q. Trojanowski,et al.  Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS , 2010, Nature.

[77]  Takeo Kato,et al.  Mutations of optineurin in amyotrophic lateral sclerosis , 2010, Nature.

[78]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[79]  J L Haines,et al.  Supporting Online Material Materials and Methods Figs. S1 to S7 Tables S1 to S4 References Mutations in the Fus/tls Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2022 .

[80]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[81]  A. Al-Chalabi,et al.  Quantification of reverse transcriptase in ALS and elimination of a novel retroviral candidate , 2008, Neurology.

[82]  D. Drachman,et al.  Novel VCP mutations in inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia , 2007, Clinical genetics.

[83]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[84]  M. Swash,et al.  Multifocal motor neuropathy , 2006, Neurology.

[85]  B. Monia,et al.  Antisense oligonucleotide therapy for neurodegenerative disease. , 2006, The Journal of clinical investigation.

[86]  H. Mitsumoto,et al.  The natural history of primary lateral sclerosis , 2006, Neurology.

[87]  L. Greensmith,et al.  Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model , 2005, Nature Medicine.

[88]  M. Thun,et al.  Prospective study of military service and mortality from ALS , 2005, Neurology.

[89]  Shin J. Oh,et al.  Mutant dynactin in motor neuron disease , 2003, Nature Genetics.

[90]  V. Meininger,et al.  APOE: A potential marker of disease progression in ALS , 2002, Neurology.

[91]  A. Ludolph,et al.  Recessively inherited amyotrophic lateral sclerosis: a German family with the D90A CuZn-SOD mutation , 2000, Journal of Neurology.

[92]  H. Horvitz,et al.  Epidemiology of mutations in superoxide dismutase in amyotrophic lateal sclerosis , 1997, Annals of neurology.

[93]  M. Gurney,et al.  Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. , 1994, Science.

[94]  V. Meininger,et al.  A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. , 1994, The New England journal of medicine.

[95]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[96]  L. Kurland,et al.  Familial adult motor neuron disease: amyotrophic lateral sclerosis , 1986, Neurology.

[97]  A. Ludolph,et al.  Amyotrophic lateral sclerosis. , 2012, Current opinion in neurology.

[98]  P. Andersen Amyotrophic lateral sclerosis associated with mutations in the CuZn superoxide dismutase gene , 2006, Current neurology and neuroscience reports.

[99]  A. Al-Chalabi,et al.  Amyotrophic lateral sclerosis in an urban setting: a population based study of inner city London. , 2006, Journal of neurology.