Improving Robustness of Stopping Multi-objective Evolutionary Algorithms by Simultaneously Monitoring Objective and Decision Space
暂无分享,去创建一个
[1] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[2] Kalyanmoy Deb,et al. Running performance metrics for evolutionary multi-objective optimizations , 2002 .
[3] Marco Laumanns,et al. SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .
[4] Carlos A. Coello Coello,et al. Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization , 2012, IEEE Transactions on Evolutionary Computation.
[5] Antonio J. Nebro,et al. jMetal: A Java framework for multi-objective optimization , 2011, Adv. Eng. Softw..
[6] Heike Trautmann,et al. A Taxonomy of Online Stopping Criteria for Multi-Objective Evolutionary Algorithms , 2011, EMO.
[7] Jesús García,et al. An approach to stopping criteria for multi-objective optimization evolutionary algorithms: The MGBM criterion , 2009, 2009 IEEE Congress on Evolutionary Computation.
[8] R. K. Ursem. Multi-objective Optimization using Evolutionary Algorithms , 2009 .
[9] Hussein A. Abbass,et al. A dominance-based stability measure for multi-objective evolutionary algorithms , 2009, 2009 IEEE Congress on Evolutionary Computation.
[10] Heike Trautmann,et al. OCD: Online Convergence Detection for Evolutionary Multi-Objective Algorithms Based on Statistical Testing , 2009, EMO.
[11] Lothar Thiele,et al. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..
[12] Marco Laumanns,et al. Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.
[13] Lothar Thiele,et al. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.
[14] N. Stander,et al. A non‐dominance‐based online stopping criterion for multi‐objective evolutionary algorithms , 2010 .
[15] Heike Trautmann,et al. Statistical Methods for Convergence Detection of Multi-Objective Evolutionary Algorithms , 2009, Evolutionary Computation.
[16] Marco Laumanns,et al. Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..
[17] Mark Wineberg,et al. The Underlying Similarity of Diversity Measures Used in Evolutionary Computation , 2003, GECCO.
[18] Marc Schoenauer,et al. A Steady Performance Stopping Criterion for Pareto-based Evolutionary Algorithms , 2004 .
[19] Debora Gil,et al. Detecting Loss of Diversity for an Efficient Termination of EAs , 2013, 2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing.
[20] Enrique Alba,et al. A Study of Convergence Speed in Multi-objective Metaheuristics , 2008, PPSN.