Dimensional recursion for multivariate adaptive integration

We consider multivariate integrals which can be expressed as iterated integrals over product regions. The iteration over the dimensions is applied recursively for a numerical evaluation. We evaluate a scheme for setting the tolerated error in the interface between the integration levels and address the efficiency of the resulting method with respect to time and space requirements.

[1]  J. Van Voorst,et al.  Loop integration results using numerical extrapolation for a non-scalar integral , 2004 .

[2]  Terje O. Espelid,et al.  Algorithm 698: DCUHRE: an adaptive multidemensional integration routine for a vector of integrals , 1991, TOMS.

[3]  L. Thurstone A law of comparative judgment. , 1994 .

[4]  K Mullen,et al.  Models for the duo-trio and triangular methods. , 1988, Biometrics.

[5]  David K. Kahaner,et al.  Double Integration Using One-Dimensional Adaptive Quadrature Routines: A Software Interface Problem , 1981, TOMS.

[6]  Shujun Li,et al.  Regularization and Extrapolation Methods for Infrared Divergent Loop Integrals , 2005, International Conference on Computational Science.

[7]  Elise de Doncker,et al.  On a Numerical Evaluation of Loop Integrals , 2003 .

[8]  Shujun Li,et al.  Interdisciplinary applications of mathematical modeling , 2009, ICIS.

[9]  S. Nash,et al.  Numerical methods and software , 1990 .

[10]  Elise de Doncker,et al.  Computation of loop integrals using extrapolation , 2004 .

[11]  Elise de Doncker,et al.  Numerical Computation of a Non-Planar Two-Loop Vertex Diagram , 2006 .

[12]  Elise de Doncker,et al.  The Integration of the Multivariate Normal Density Function for the Triangular Method , 1987 .

[13]  Elise de Doncker,et al.  Error distribution for iterated integrals , 2006 .

[14]  Tiancheng Li,et al.  plrint5d: A Five-Dimensional Automatic Cubature Routine Designed for a Multi-core Platform , 2010, ICCSA.