Postnatal craniofacial ontogeny in neandertals and modern humans.

OBJECTIVES Neandertals and humans are closely related but differ noticeably in adult morphology. Previous work has been equivocal as to the contribution of postnatal growth and development to these differences. Due to disparate preservation, most analyses focus on specific anatomies, reconstructed fossils, or limited sample sizes. The objective of this research is to highlight the importance of postnatal growth in expressing Neandertal-human distinctions in the craniofacial skeleton, using a large and unreconstructed Neandertal sample. MATERIALS/METHODS A resampling approach is utilized to compare relative size change in 20 craniofacial dimensions between Neandertals (n = 42) and humans (n = 262). The large number of immature Neandertal samples within and between dental stages provides the necessary variation to test for growth differences. Nested resampling using human-human comparisons assesses the likelihood of observing human-Neandertal growth differences under the null hypothesis of similar ontogenetic variation. RESULTS Humans and Neandertals undergo comparable levels of overall size change. However, we identify growth differences for a number of traits, helping explain some of the unique features of this fossil taxon. Nested resampling shows it is unlikely that a Neandertal-like maturation would be observed in a random ontogenetic sample of humans. DISCUSSION Growth during adolescence appears to be fundamental in the expression of some Neandertal anatomies. Neandertal upper facial and nasal breadths appear to have expanded rapidly after puberty to account for differences between preadolescents and adults, and Neandertals and humans. Mandibular growth differences may relate to anterior tooth use to process foods and paramastication during Neandertal maturation.

[1]  F. Bookstein,et al.  Virtual Reconstruction of Modern and Fossil Hominoid Crania: Consequences of Reference Sample Choice , 2015, Anatomical record.

[2]  Zachary Cofran Mandibular development in Australopithecus robustus. , 2014, American journal of physical anthropology.

[3]  F. Williams Neandertal Craniofacial Growth and Development and Its Relevance for Modern Human Origins , 2013 .

[4]  A. Rosas,et al.  Handedness in Neandertals from the El Sidrón (Asturias, Spain): Evidence from Instrumental Striations with Ontogenetic Inferences , 2013, PloS one.

[5]  P. Gunz,et al.  Middle Pleistocene human facial morphology in an evolutionary and developmental context. , 2012, Journal of human evolution.

[6]  P. Gunz Evolutionary Relationships Among Robust and Gracile Australopiths: An “Evo-devo” Perspective , 2012, Evolutionary Biology.

[7]  P. Gunz,et al.  A uniquely modern human pattern of endocranial development. Insights from a new cranial reconstruction of the Neandertal newborn from Mezmaiskaya. , 2012, Journal of human evolution.

[8]  D. Lordkipanidze A Quantitative Assessment of Mandibular Variation in the Dmanisi Hominins , 2012 .

[9]  Noreen von Cramon-Taubadel,et al.  Global human mandibular variation reflects differences in agricultural and hunter-gatherer subsistence strategies , 2011 .

[10]  P. Gunz,et al.  Virtual reconstruction of the Le Moustier 2 newborn skull.. Implications for Neandertal ontogeny , 2011 .

[11]  Tanya M. Smith,et al.  Dental evidence for ontogenetic differences between modern humans and Neanderthals , 2010, Proceedings of the National Academy of Sciences.

[12]  P. Gunz,et al.  Brain development after birth differs between Neanderthals and modern humans , 2010, Current Biology.

[13]  P. Gunz,et al.  Endocranial shape changes during growth in chimpanzees and humans: a morphometric analysis of unique and shared aspects. , 2010, Journal of human evolution.

[14]  M. Toussaint,et al.  The Neandertal lower right deciduous second molar from Trou de l'Abîme at Couvin, Belgium. , 2010, Journal of human evolution.

[15]  H. Rougier,et al.  Is the suprainiac fossa a Neandertal autapomorphy? A complementary external and internal investigation. , 2010, Journal of human evolution.

[16]  A. Tillier,et al.  New Neandertal remains from the Grotte du Bison at Arcy-sur-Cure, France. , 2009, Journal of human evolution.

[17]  J. Hublin,et al.  Neandertal birth canal shape and the evolution of human childbirth , 2009, Proceedings of the National Academy of Sciences.

[18]  J. van der Plicht,et al.  New data on the late Neandertals: direct dating of the Belgian Spy fossils. , 2009, American journal of physical anthropology.

[19]  D. Flas The Lincombian-Ranisian-Jermanowician and the limit of the Aurignacian spreading on the northern European plain , 2009 .

[20]  S. Athreya,et al.  Is Central Asia the eastern outpost of the Neandertal range? A reassessment of the Teshik-Tash child. , 2009, American journal of physical anthropology.

[21]  V. Doronichev,et al.  Neanderthal brain size at birth provides insights into the evolution of human life history , 2008, Proceedings of the National Academy of Sciences.

[22]  G. Suwa,et al.  Growth-related changes in prehistoric Jomon and modern Japanese mandibles with emphasis on cortical bone distribution. , 2008, American journal of physical anthropology.

[23]  A. Rosas,et al.  Facial ontogeny in Neanderthals and modern humans , 2007, Proceedings of the Royal Society B: Biological Sciences.

[24]  I. Martínez,et al.  New Neandertal remains from Cova Negra (Valencia, Spain). , 2007, Journal of human evolution.

[25]  Antonio García-Tabernero,et al.  Paleobiology and comparative morphology of a late Neandertal sample from El Sidrón, Asturias, Spain , 2006, Proceedings of the National Academy of Sciences.

[26]  M. Dean Tooth microstructure tracks the pace of human life-history evolution. , 2006 .

[27]  Stephen R. Frost,et al.  Examining affinities of the Taung child by developmental simulation. , 2006, Journal of human evolution.

[28]  M. Christopher Dean Tooth microstructure tracks the pace of human life-history evolution , 2006, Proceedings of the Royal Society B: Biological Sciences.

[29]  G. Krovitz,et al.  Ontogenetic migration of the mental foramen in Neandertals and modern humans. , 2004, Journal of human evolution.

[30]  F. Bookstein,et al.  Comparison of cranial ontogenetic trajectories among great apes and humans. , 2004, Journal of human evolution.

[31]  P. O'higgins,et al.  Hominins do not share a common postnatal facial ontogenetic shape trajectory. , 2004, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[32]  C. Zollikofer,et al.  Kinematics of cranial ontogeny: heterotopy, heterochrony, and geometric morphometric analysis of growth models. , 2004, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[33]  B. Maureille Anthropology: A lost Neanderthal neonate found , 2002, Nature.

[34]  C. Zollikofer,et al.  Neanderthal cranial ontogeny and its implications for late hominid diversity , 2001, Nature.

[35]  J. Radovčić,et al.  Krapina 1: a juvenile Neandertal from the early late Pleistocene of Croatia. , 2000, American journal of physical anthropology.

[36]  D. Bonjean,et al.  Immature Neandertal Remains of Level 4A of the Scladina cave (Andenne, Belgium) , 1998 .

[37]  D. J. Daegling Growth in the mandibles of African apes , 1996 .

[38]  A. Tillier The Pech de l’Azé and roc de marsal children (middle paleolithic, France): Skeletal evidence for variation in Neanderthal ontogeny , 1996 .

[39]  R. Tompkins Relative dental development of Upper Pleistocene hominids compared to human population variation. , 1996, American journal of physical anthropology.

[40]  Osamu Kondo,et al.  Neanderthal infant burial , 1995, Nature.

[41]  E. Trinkaus,et al.  Determinants of retromolar space presence in Pleistocene Homo mandibles , 1995 .

[42]  A. Tillier Neanderthal ontogeny : A new source for critical analysis , 1995 .

[43]  Y. Rak,et al.  A Neandertal infant from Amud Cave, Israel , 1994 .

[44]  L. Richards,et al.  Relationships between age and dental attrition in Australian aboriginals. , 1991, American journal of physical anthropology.

[45]  M. Madre-Dupouy Principaux caractères de l'enfant néandertalien du Roc de Marsal, Dordogne (France) , 1991 .

[46]  A. Turcq Le squelette de l'enfant du Roc de Marsal: les données de la fouille , 1989 .

[47]  A. Turq Le squelette de l'enfant du Roc-de-Marsal. Les données de la fouille. [Les données de la fouille] , 1989 .

[48]  G. Maat Practising methods of age determination. Comments on methods combining multiple age indicators , 1987 .

[49]  E. Trinkaus The Mousterian legacy : human biocultural change in the upper Pleistocene , 1983 .

[50]  F. Smith,et al.  Evolution of the supraorbital region in Upper Pleistocene fossil hominids from South‐Central Europe , 1980 .

[51]  M. Wolpoff The Krapina dental remains. , 1978, American journal of physical anthropology.

[52]  Sergio Sergi Il cranio neandertaliano del Monte Circeo (Circeo I) , 1974 .

[53]  A. Ascenzi,et al.  A New Neandertal Child Mandible from an Upper Pleistocene Site in Southern Italy , 1971, Nature.

[54]  S. Garn,et al.  Genetic, Nutritional, and Maturational Correlates of Dental Development , 1965, Journal of dental research.

[55]  F. Weidenreich The paleolithic child from the Teshik-Tash Cave in Southern Uzbekistan (Central Asia) , 1945 .

[56]  M. Boule L'homme fossile de la Chapelle-aux-Saints , 1909 .

[57]  G. Busk,et al.  On the Fossil Contents of the Genista Cave, Gibraltar , 1865, Quarterly Journal of the Geological Society of London.