Integrated Semiconductor Laser Optical Phase Lock Loops

An Optical Phase Lock Loop (OPLL) is a feedback control system that allows the phase stabilization of a laser to a reference laser with absolute but adjustable frequency offset. Such phase and frequency locked optical oscillators are of great interest for sensing, spectroscopy, and optical communication applications, where coherent detection offers advantages of higher sensitivity and spectral efficiency than can be achieved with direct detection. As explained in this paper, the fundamental difficulty in realising an OPLL is related to the limitations on loop bandwidth and propagation delay as a function of laser linewidth. In particular, the relatively wide linewidth of semiconductor lasers requires short delay, which can only be achieved through shortening of the feedback path, which is greatly facilitated through photonic integration. This paper reviews the advances in the development of semiconductor laser-based OPLLs and describes how improvements in performance have been enabled by improvements in photonic integration technology. We also describe the first OPLL created using foundry fabricated photonic integrated circuits and off-the-shelf electronic components. Stable locking has been achieved for offset frequencies between 4 and 12 GHz with a heterodyne phase noise below –100 dBc/Hz at 10 kHz offset. This is the highest performance yet reported for a monolithically integrated OPLL and demonstrates the attractiveness of the foundry fabrication approach.

[1]  E.C.M. Pennings,et al.  Optical multi-mode interference devices based on self-imaging: principles and applications , 1995 .

[2]  L. Coldren,et al.  40Gbit/s Coherent Optical Receiver Using a Costas Loop , 2012 .

[3]  M. Ohtsu,et al.  Highly Coherent Semiconductor Lasers , 1991 .

[4]  C. C. Renaud,et al.  Tuneable monolithically integrated photonic THz heterodyne system , 2012, 2012 IEEE International Topical Meeting on Microwave Photonics.

[5]  A. Enard,et al.  High-Power Tunable Dilute Mode DFB Laser With Low RIN and Narrow Linewidth , 2013, IEEE Photonics Technology Letters.

[6]  G. Busico,et al.  Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  R. C. Steele,et al.  Optical phase-locked loop using semiconductor laser diodes , 1983 .

[8]  Alan Y. Liu,et al.  Heterogeneous Silicon Photonic Integrated Circuits , 2016, Journal of Lightwave Technology.

[9]  Richard V. Penty,et al.  An introduction to InP-based generic integration technology , 2014 .

[10]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[11]  José Capmany,et al.  Integrated microwave photonics , 2019, Nature Photonics.

[12]  Alwyn J. Seeds,et al.  Optoelectronic millimeter-wave synthesis using an optical frequency comb Generator, optically injection locked lasers, and a unitraveling-carrier photodiode , 2003 .

[13]  J. Hall,et al.  Principles of optical phase-locking: Application to internal mirror He-Ne lasers phase-locked via fast control of the discharge current , 1987 .

[14]  Hyun-chul Park,et al.  An Integrated 40 Gbit/s Optical Costas Receiver , 2013, Journal of Lightwave Technology.

[15]  M. Vallet,et al.  Dual-Frequency Laser at 1.5 $\mu$ m for Optical Distribution and Generation of High-Purity Microwave Signals , 2008, Journal of Lightwave Technology.

[16]  M. Ohtsu,et al.  Linking two optical frequency combs by heterodyne optical phase locking between diode lasers at 2.6-THz frequency-difference , 1999, IEEE Photonics Technology Letters.

[17]  K. Kikuchi,et al.  Novel method for high resolution measurement of laser output spectrum , 1980 .

[18]  N. Kukutsu,et al.  Photonic generation of millimeter and terahertz waves and its applications , 2007, 2007 19th International Conference on Applied Electromagnetics and Communications.

[19]  Kun-Yii Tu,et al.  Demonstration of a Tunable Microwave-Photonic Notch Filter Using Low-Loss Silicon Ring Resonators , 2009, Journal of Lightwave Technology.

[20]  Wim Bogaerts,et al.  Design Challenges in Silicon Photonics , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[21]  T. Okoshi,et al.  Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator , 1984 .

[22]  Ernesto Ciaramella,et al.  Homodyne Coherent Optical Receiver Using an Optical Injection Phase-Lock Loop , 2011, Journal of Lightwave Technology.

[23]  Y. Yamamoto AM and FM quantum noise in semiconductor lasers - Part I: Theoretical analysis , 1983, IEEE Journal of Quantum Electronics.

[24]  A. Seeds,et al.  A Pilot-Carrier Coherent LEO-to-Ground Downlink System Using an Optical Injection Phase Lock Loop (OIPLL) Technique , 2012, Journal of Lightwave Technology.

[25]  W. F. Walls Cross-correlation phase noise measurements , 1992, Proceedings of the 1992 IEEE Frequency Control Symposium.

[26]  H. Hashemi,et al.  Phase-Controlled Apertures Using Heterodyne Optical Phase-Locked Loops , 2008, IEEE Photonics Technology Letters.

[27]  C.-H. Shin,et al.  Heterodyne optical phase-locked loop by confocal Fabry-Periot cavity coupled AlGaAs lasers , 1990, IEEE Photonics Technology Letters.

[28]  U. Gliese,et al.  Development of a packaged optical phase-locked loop for use as a signal source in phased-array communications antennas , 1998, Optics & Photonics.

[29]  Cyril C. Renaud,et al.  Monolithically Integrated Optical Phase Lock Loop for Microwave Photonics , 2014, Journal of Lightwave Technology.

[30]  E. Bloch,et al.  A 1–20-GHz All-Digital InP HBT Optical Wavelength Synthesis IC , 2013, IEEE Transactions on Microwave Theory and Techniques.

[31]  H. Li,et al.  Phase-locking of laser diodes , 1990 .

[32]  A. Matsko,et al.  Towards chip-scale optical frequency synthesis based on optical heterodyne phase-locked loop. , 2017, Optics express.

[33]  Arry,et al.  Towards chip-scale optical frequency synthesis based on optical heterodyne phase-locked loop , 2017 .

[34]  W. Michie,et al.  The performance of optical phase-locked loops in the presence of nonnegligible loop propagation delay , 1987 .

[35]  Arne Leinse,et al.  Low loss, high contrast planar optical waveguides based on low-cost CMOS compatible LPCVD processing , 2008, SPIE Photonics Europe.

[36]  U. Gliese,et al.  7-14 GHz optical phase-locked loop (OPLL) source module for use in coherent optical beamforming applications , 1998 .

[37]  R. Freiberg,et al.  Laser injection locking , 1973 .

[38]  R. Soref,et al.  The Past, Present, and Future of Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[39]  Alwyn J. Seeds,et al.  Delay, linewidth and bandwidth limitations in optical phase-locked loop design , 1990 .

[40]  U. Gliese,et al.  A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers , 1992, IEEE Photonics Technology Letters.

[41]  L. Coldren,et al.  Highly integrated optical heterodyne phase-locked loop with phase/frequency detection. , 2012, Optics express.

[42]  Wei Li,et al.  Electrically pumped continuous-wave III–V quantum dot lasers on silicon , 2016, Nature Photonics.

[43]  L. Coldren,et al.  An Optical Phase-Locked Loop Photonic Integrated Circuit , 2010, Journal of Lightwave Technology.

[44]  Mario Dagenais,et al.  6-34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers , 1989 .

[45]  Guillermo Carpintero,et al.  Optical injection locking of monolithically integrated photonic source for generation of high purity signals above 100 GHz. , 2014, Optics express.

[46]  Philippe Gallion,et al.  Locking range, phase noise and power spectrum of an injection-locked semiconductor laser , 1990 .

[47]  Bostjan Batagelj,et al.  Improved phase detector for electro-optical phase-locked loops , 2008 .

[48]  L. Ponnampalam,et al.  Hybrid Integrated Optical Phase-Lock Loops for Photonic Terahertz Sources , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[49]  Leonid G. Kazovsky,et al.  Performance analysis and laser linewidth requirements for optical PSK heterodyne communications systems , 1986 .

[50]  U. Gliese,et al.  Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals , 1999 .

[51]  A. Seeds,et al.  Fast heterodyne optical phase-lock loop using double quantum well laser diodes , 1992 .

[52]  Floyd M. Gardner,et al.  Phaselock Techniques: Gardner/Phaselock Techniques , 2005 .

[53]  D. J. Robbins,et al.  Generic foundry model for InP-based photonics , 2011 .

[54]  A. Yariv,et al.  Coherent Power Combination of Semiconductor Lasers Using Optical Phase-Lock Loops , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[55]  Tadao Nagatsuma,et al.  Self-Heterodyne Spectrometer Using Uni-Traveling-Carrier Photodiodes for Terahertz-Wave Generators and Optoelectronic Mixers , 2014, Journal of Lightwave Technology.

[56]  A. Mooradian,et al.  Linewidth and offset frequency locking of external cavity GaAlAs lasers , 1989 .

[57]  A. Bhardwaj,et al.  Integrated optical phase-locked loop , 2009, 2009 Conference on Optical Fiber Communication - incudes post deadline papers.

[58]  C.-H. Shin,et al.  A 134 MHz bandwidth homodyne optical phase-locked-loop of semiconductor laser diodes , 1991, IEEE Photonics Technology Letters.

[59]  M. J. Robertson,et al.  Monolithically Integrated Photonic Heterodyne System , 2011, Journal of Lightwave Technology.

[60]  Dennis W. Prather,et al.  Radiofrequency signal-generation system with over seven octaves of continuous tuning , 2013, Nature Photonics.

[61]  Edmund Linfield,et al.  Coherent terahertz photonics. , 2013, Optics express.

[62]  Siva Yegnanarayanan,et al.  Compact silicon-based integrated optical time-delay network , 1997, Optics & Photonics.

[63]  A.J. Seeds,et al.  Microwave Photonics , 2006, Journal of Lightwave Technology.

[64]  M. J. Robertson,et al.  A compact tunable coherent terahertz source based on an hybrid integrated optical phase-lock loop , 2010, 2010 IEEE International Topical Meeting on Microwave Photonics.

[65]  Y. Yamamoto,et al.  AM and FM quantum noise in semiconductor lasers - Part II: Comparison of theoretical and experimental results for AlGaAs lasers , 1983, IEEE Journal of Quantum Electronics.

[66]  L. H. Enloe,et al.  Laser phase-locked loop , 1965 .

[67]  Arpad L. Scholtz,et al.  Frequency synchronization and phase locking of CO2 lasers , 1982 .

[68]  Francesca Pozzi,et al.  Monolithically integrated heterodyne optical phase-lock loop with RF XOR phase detector. , 2011, Optics express.

[69]  L. D'Addario,et al.  ALMA Memo # 483 The ALMA 1 st Local Oscillator Reference , 2004 .

[70]  Mehdi Alouini,et al.  Optoelectronic phase-locked loop for millimeter-wave and THz beat note stabilization , 2012, Optical Engineering + Applications.

[71]  D Meschede,et al.  Realization of a new concept for visible frequency division: phase locking of harmonic and sum frequencies. , 1990, Optics letters.

[72]  Mark J. W. Rodwell,et al.  An integrated heterodyne optical phase-locked loop with record offset locking frequency , 2014, OFC 2014.

[73]  U. Gliese,et al.  A 3-18 GHz Microwave Signal Generator Based On Optical Phase Locked Semiconductor DFB Lasers , 1993, LEOS 1993 Summer Topical Meeting Digest on Optical Microwave Interactions/Visible Semiconductor Lasers/Impact of Fiber Nonlinearities on Lightwave Systems/Hybrid Optoelectronic Integration and Packagi.

[74]  I. F. Faria,et al.  On the thermal contribution to the FM response of DFB lasers: theory and experiment , 1994 .

[75]  Comparison Between First-Order and , 1994 .