Uniform Stability of a Particle Approximation of the Optimal Filter Derivative
暂无分享,去创建一个
[1] D. Titterington. Recursive Parameter Estimation Using Incomplete Data , 1984 .
[2] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[3] F. LeGland,et al. Recursive estimation in hidden Markov models , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.
[4] A Orman,et al. Optimization of Stochastic Models: The Interface Between Simulation and Optimization , 2012, J. Oper. Res. Soc..
[5] M. Pitt,et al. Filtering via Simulation: Auxiliary Particle Filters , 1999 .
[6] J. Azéma,et al. Seminaire de Probabilites XXXIV , 2000 .
[7] P. Moral,et al. Branching and interacting particle systems. Approximations of Feynman-Kac formulae with applications to non-linear filtering , 2000 .
[8] Nando de Freitas,et al. Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.
[9] P. Moral,et al. Genealogies and Increasing Propagation of Chaos For Feynman-Kac and Genetic Models , 2001 .
[10] Carlo Novara,et al. Nonlinear Time Series , 2003 .
[11] Jianqing Fan. Nonlinear Time Series , 2003 .
[12] A. Doucet,et al. Parameter estimation in general state-space models using particle methods , 2003 .
[13] P. Moral,et al. On a Class of Genealogical and Interacting Metropolis Models , 2003 .
[14] P. Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .
[15] Melvin J. Hinich,et al. Time Series Analysis by State Space Methods , 2001 .
[16] Arnaud Doucet,et al. Particle methods for optimal filter derivative: application to parameter estimation , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..
[17] L. Gerencsér,et al. Recursive estimation of Hidden Markov Models , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.
[18] N. Oudjane,et al. Stability and Uniform Particle Approximation of Nonlinear Filters in Case of Non Ergodic Signals , 2005 .
[19] Haikady N. Nagaraja,et al. Inference in Hidden Markov Models , 2006, Technometrics.
[20] Rémi Munos,et al. Particle Filter-based Policy Gradient in POMDPs , 2008, NIPS.
[21] O. Cappé,et al. Sequential Monte Carlo smoothing with application to parameter estimation in nonlinear state space models , 2006, math/0609514.
[22] D. Crisan,et al. Uniform approximations of discrete-time filters , 2008, Advances in Applied Probability.
[23] Aurélien Garivier,et al. ON THE FORWARD FILTERING BACKWARD SMOOTHING PARTICLE APPROXIMATIONS OF THE SMOOTHING DISTRIBUTION IN GENERAL STATE SPACES MODELS , 2009, 0904.0316.
[24] Arnaud Doucet,et al. An overview of sequential Monte Carlo methods for parameter estimation in general state-space models , 2009 .
[25] Sumeetpal S. Singh,et al. A backward particle interpretation of Feynman-Kac formulae , 2009, 0908.2556.
[26] A. Beskos,et al. On the stability of sequential Monte Carlo methods in high dimensions , 2011, 1103.3965.
[27] P. Moral,et al. Concentration Inequalities for Mean Field Particle Models , 2011, 1211.1837.
[28] N. Whiteley. Sequential Monte Carlo Samplers: Error Bounds and Insensitivity to Initial Conditions , 2011, 1103.3970.
[29] Aurélien Garivier,et al. Sequential Monte Carlo smoothing for general state space hidden Markov models , 2011, 1202.2945.
[30] Sumeetpal S. Singh,et al. Particle approximations of the score and observed information matrix in state space models with application to parameter estimation , 2011 .
[31] N. Whiteley. Stability properties of some particle filters , 2011, 1109.6779.
[32] Arnaud Doucet,et al. On Particle Methods for Parameter Estimation in State-Space Models , 2014, 1412.8695.
[33] Ajay Jasra,et al. On the Behaviour of the Backward Interpretation of Feynman-Kac Formulae Under Verifiable Conditions , 2013, J. Appl. Probab..
[34] A. Jasra. On the behaviour of the backward interpretation of Feynman-Kac formulae under verifiable conditions , 2015 .