Reactor similarity for plasma–material interactions in scaled-down tokamaks as the basis for the Vulcan conceptual design

[1]  P. T. Bonoli,et al.  Vulcan: A steady-state tokamak for reactor-relevant plasma–material interaction science , 2012 .

[2]  P. C. Stangeby,et al.  Obtaining reactor-relevant divertor conditions in tokamaks , 2011 .

[3]  S. J. Wukitch,et al.  High confinement/high radiated power H-mode experiments in Alcator C-Mod and consequences for International Thermonuclear Experimental Reactor (ITER) QDT = 10 operationa) , 2011 .

[4]  D. Whyte,et al.  The relation between upstream density and temperature widths in the scrape-off layer and the power width in an attached divertor , 2010 .

[5]  B. LaBombard Scaling of the power exhaust channel in Alcator C-Mod , 2010 .

[6]  J. Contributors,et al.  Pedestal width and ELM size identity studies in JET and DIII-D; implications for ITER , 2009 .

[7]  R. E. Bell,et al.  Divertor heat flux mitigation in high-performance H-mode discharges in the National Spherical Torus Experiment , 2009 .

[8]  D. Whyte On the consequences of neutron induced damage for volumetric fuel retention in plasma facing materials , 2009 .

[9]  Robert J. Goldston,et al.  2D divertor design calculations for the national high-power advanced torus experiment , 2009 .

[10]  Tomonori Takizuka,et al.  Power requirement for accessing the H-mode in ITER , 2008 .

[11]  T. C. Luce,et al.  Application of dimensionless parameter scaling techniques to the design and interpretation of magnetic fusion experiments , 2008 .

[12]  R. Doerner,et al.  Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions , 2008 .

[13]  T. Fujita,et al.  Chapter 2: Plasma confinement and transport , 2007 .

[14]  L. L. Lao,et al.  The ARIES-AT advanced tokamak, Advanced technology fusion power plant , 2006 .

[15]  A. Kallenbach,et al.  Multi-machine comparisons of H-mode separatrix densities and edge profile behaviour in the ITPA SOL and Divertor Physics Topical Group , 2005 .

[16]  Brian Labombard,et al.  Transport-driven Scrape-Off-Layer flows and the boundary conditions imposed at the magnetic separatrix in a tokamak plasma , 2004 .

[17]  R. Neu,et al.  Edge transport and its interconnection with main chamber recycling in ASDEX Upgrade , 2003 .

[18]  R. Aymar,et al.  The ITER design , 2002 .

[19]  P. Stangeby,et al.  The Plasma Boundary of Magnetic Fusion Devices , 2000 .

[20]  B. Rogers,et al.  Phase space of tokamak edge turbulence, the L-H transition, and the formation of the edge pedestal , 1998 .

[21]  Mark S. Tillack,et al.  Overview of the ARIES-RS reversed-shear tokamak power plant study , 1997 .

[22]  D. N. Hill,et al.  The two-dimensional structure of radiative divertor plasmas in the DIII-D Tokamak , 1997 .

[23]  Ian H. Hutchinson,et al.  Similarity in divertor studies , 1996 .

[24]  K. F. Mast,et al.  Tungsten as target material in fusion devices , 1996 .

[25]  J. Connor,et al.  Scaling laws for two‐dimensional divertor modeling , 1996 .

[26]  S. Krasheninnikov Divertor plasma detachment : Present status of understanding , 1996 .

[27]  K. Lackner,et al.  Figures of Merit for Divertor Similarity , 1994 .

[28]  B. Kadomtsev Tokamak plasma : a complex physical system , 1992 .

[29]  R. Toschi,et al.  Overview of the european fusion programme , 1989 .

[30]  S. Wolfe,et al.  A new look at density limits in tokamaks , 1988 .