J‐Park Simulator: Wissensgraph für Industrie 4.0

[1]  Rafael Batres,et al.  Ontologies in Process Systems Engineering , 2017 .

[2]  Leon Urbas,et al.  Linked Data as Integrating Technology for Industrial Data , 2012, Int. J. Distributed Syst. Technol..

[3]  Sebastian Mosbach,et al.  Design technologies for eco-industrial parks: From unit operations to processes, plants and industrial networks , 2016 .

[4]  Markus Kraft,et al.  An agent composition framework for the J-Park Simulator - A knowledge graph for the process industry , 2019, Comput. Chem. Eng..

[5]  Iftekhar A. Karimi,et al.  Smart Sampling Algorithm for Surrogate Model Development , 2017, Comput. Chem. Eng..

[6]  Li Zhou,et al.  Towards an ontological infrastructure for chemical process simulation and optimization in the context of eco-industrial parks , 2017 .

[7]  Li Zhou,et al.  An ontology framework towards decentralized information management for eco-industrial parks , 2018, Comput. Chem. Eng..

[8]  Peter Murray-Rust,et al.  The semantics of Chemical Markup Language (CML) for computational chemistry : CompChem , 2012, Journal of Cheminformatics.

[9]  Sebastian Mosbach,et al.  OntoKin: An Ontology for Chemical Kinetic Reaction Mechanisms , 2019, J. Chem. Inf. Model..

[10]  Edrisi Muñoz,et al.  Towards an ontological infrastructure for chemical batch process management , 2010, Comput. Chem. Eng..

[11]  Sebastian Mosbach,et al.  Parameterisation of a biodiesel plant process flow sheet model , 2016, Comput. Chem. Eng..

[12]  Wolfgang Marquardt,et al.  OntoCAPE - A (re)usable ontology for computer-aided process engineering , 2009, Comput. Chem. Eng..

[13]  Sebastian Mosbach,et al.  An Ontology and Semantic Web Service for Quantum Chemistry Calculations , 2019, J. Chem. Inf. Model..

[14]  Iftekhar A. Karimi,et al.  LEAPS2: Learning based Evolutionary Assistive Paradigm for Surrogate Selection , 2018, Comput. Chem. Eng..

[15]  Yuji Naka,et al.  An upper ontology based on ISO 15926 , 2007, Comput. Chem. Eng..

[16]  Yang Lu,et al.  Industry 4.0: A survey on technologies, applications and open research issues , 2017, J. Ind. Inf. Integr..

[17]  Guy Doumeingts,et al.  Architectures for enterprise integration and interoperability: Past, present and future , 2008, Comput. Ind..

[18]  Li Zhou,et al.  A novel methodology for the design of waste heat recovery network in eco-industrial park using techno-economic analysis and multi-objective optimization , 2016 .

[19]  Iftekhar A. Karimi,et al.  Design of computer experiments: A review , 2017, Comput. Chem. Eng..

[20]  Jan Morbach,et al.  Information integration in chemical process engineering based on semantic technologies , 2011, Comput. Chem. Eng..

[21]  Jérôme Euzenat,et al.  Ontology Matching: State of the Art and Future Challenges , 2013, IEEE Transactions on Knowledge and Data Engineering.

[22]  Diego Calvanese,et al.  Ontology-Based Data Access: A Survey , 2018, IJCAI.

[23]  Heiko Paulheim,et al.  Knowledge graph refinement: A survey of approaches and evaluation methods , 2016, Semantic Web.

[24]  Manuel Mucientes,et al.  An Integrated Semantic Web Service Discovery and Composition Framework , 2015, IEEE Transactions on Services Computing.

[25]  Gerhard Schembecker,et al.  Information Technologies for Innovative Process and Plant Design , 2014 .

[26]  Mingfa Yao,et al.  A reduced toluene reference fuel chemical kinetic mechanism for combustion and polycyclic-aromatic hydrocarbon predictions , 2015 .

[27]  Henning Bonart,et al.  Improving Interoperability of Engineering Tools - Data Exchange in Plant Design , 2017 .

[28]  Nenad Krdzavac,et al.  From database to knowledge graph — using data in chemistry , 2019 .

[29]  Sebastian Mosbach,et al.  The future of computational modelling in reaction engineering , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.